Atjaunināt sīkdatņu piekrišanu

Electromagnetic Fields and Waves in Fractional Dimensional Space 2012 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 70 pages, height x width: 235x155 mm, weight: 454 g, 14 Illustrations, black and white; XVIII, 70 p. 14 illus., 1 Paperback / softback
  • Sērija : SpringerBriefs in Applied Sciences and Technology
  • Izdošanas datums: 05-Jan-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642253571
  • ISBN-13: 9783642253577
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 70 pages, height x width: 235x155 mm, weight: 454 g, 14 Illustrations, black and white; XVIII, 70 p. 14 illus., 1 Paperback / softback
  • Sērija : SpringerBriefs in Applied Sciences and Technology
  • Izdošanas datums: 05-Jan-2012
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642253571
  • ISBN-13: 9783642253577
Citas grāmatas par šo tēmu:
This book presents the concept of fractional dimensional space applied to the use of electromagnetic fields and waves.  It provides demonstrates the advantages in studying  the behavior of electromagnetic fields and waves in fractal media. The book presents novel fractional space generalization of the differential electromagnetic equations is provided as well as a new form of vector differential operators is formulated in fractional space. Using these modified vector differential operators, the classical Maxwell's electromagnetic equations are worked out. The Laplace's, Poisson's and Helmholtz's equations in fractional space are derived by using modified vector differential operators.

Recenzijas

From the reviews:

In this 70 pages long book the authors present, based on their own publications, a theoretical investigation of classical electromagnetics in the fractional dimensional space. The monograph consists of 5 chapters which are divided into sections and subsections and are followed by a short summary and a list of references. The book is recommended to graduate and advanced students as well as professionals in electromagnetics. (Georg Hebermehl, Zentralblatt MATH, Vol. 1244, 2012)

1 Introduction
1(6)
1.1 Fractional Dimensional Space
1(2)
1.2 Axiomatic Basis for Fractional Dimensional Space
3(1)
1.3 Differential Geometry of Fractional Dimensional Space
4(3)
References
5(2)
2 Differential Electromagnetic Equations in Fractional Space
7(10)
2.1 Fractional Space Generalization of Laplacian Operator
7(1)
2.2 Fractional Space Generalization of Del Operator and Related Differential Operators
8(3)
2.2.1 Del Operator in Fractional Space
8(2)
2.2.2 Gradient Operator in Fractional Space
10(1)
2.2.3 Divergence Operator in Fractional Space
10(1)
2.2.4 Curl Operator in Fractional Space
10(1)
2.3 Fractional Space Generalization of Differential Maxwell's Equations
11(1)
2.4 Fractional Space Generalization of Potentials for Static Fields, Poisson's and Laplace's Equations
12(2)
2.5 Fractional Space Generalization of Potentials for Time-Varying Fields
14(1)
2.6 Fractional Space Generalization of the Helmholtz's Equation
15(1)
2.7 Summary
16(1)
References
16(1)
3 Potentials for Static and Time-Varying Fields in Fractional Space
17(10)
3.1 Electrostatic Potential in Fractional Space
17(4)
3.1.1 An Exact Solution of the Laplace's Equation in D-dimensional Fractional Space
17(2)
3.1.2 Electrostatic Potential Inside a Rectangular Box in Fractional Space
19(2)
3.1.3 Summary
21(1)
3.2 Time-Varying Potentials in Fractional Space
21(6)
3.2.1 Inhomogeneous Vector Potential Wave Equation in D-dimensional Fractional Space
21(4)
3.2.2 Summary
25(1)
References
25(2)
4 Electromagnetic Wave Propagation in Fractional Space
27(34)
4.1 General Plane Wave Solutions in Fractional Space: Lossless Medium Case
27(6)
4.1.1 General Plane Wave Solutions in Fractional Space
27(3)
4.1.2 Discussion on Fractional Space Solution
30(3)
4.1.3 Summary
33(1)
4.2 General Plane Wave Solutions in Fractional Space: Lossy Medium Case
33(9)
4.2.1 General Plane Wave Solutions in Lossy Medium in Fractional Space
34(3)
4.2.2 Discussion on Fractional Space Solution in Lossy Medium
37(3)
4.2.3 Example: Current Sheet as Source of Plane Waves in Fractional Space
40(2)
4.2.4 Summary
42(1)
4.3 Cylindrical Wave Propagation in Fractional Space
42(9)
4.3.1 An Exact Solution of Cylindrical Wave Equation in Fractional Space
43(4)
4.3.2 Discussion on Cylindrical Wave Solution in Fractional Space
47(4)
4.3.3 Summary
51(1)
4.4 Spherical Wave Propagation in Fractional Space
51(10)
4.4.1 Spherical Wave Equation in D-dimensional Fractional Space
51(4)
4.4.2 Discussion on Fractional Space Solution
55(4)
4.4.3 Summary
59(1)
References
59(2)
5 Electromagnetic Radiations from Sources in Fractional Space
61(8)
5.1 Solution Procedure for Radiation Problems in Fractional Space
61(3)
5.1.1 The Vector Potential AD for Electric Current Source J
61(1)
5.1.2 The Vector Potential FD for Magnetic Current Source M
62(1)
5.1.3 Radiated Electric and Magnetic Fields in Far Zone for Electric J and Magnetic Current Source M
63(1)
5.2 Elementary Hertzian Dipole in Fractional Space
64(3)
5.2.1 Fields Radiated
64(2)
5.2.2 Directivity
66(1)
5.3 Summary
67(2)
References
67(2)
6 Conclusions
69
Muhammad Zubair Research Associate Faculty of Electronic Engineering GIK Institute of Engineering Sciences and Technology Topi, Pakistan.