Atjaunināt sīkdatņu piekrišanu

Electromagnetic Technologies in Food Science [Hardback]

Edited by , Edited by (Central University of Venezuela)
  • Formāts: Hardback, 448 pages, height x width x depth: 244x170x29 mm, weight: 1021 g
  • Izdošanas datums: 03-Jan-2022
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 111975951X
  • ISBN-13: 9781119759515
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 217,21 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 448 pages, height x width x depth: 244x170x29 mm, weight: 1021 g
  • Izdošanas datums: 03-Jan-2022
  • Izdevniecība: John Wiley & Sons Inc
  • ISBN-10: 111975951X
  • ISBN-13: 9781119759515
Citas grāmatas par šo tēmu:

A comprehensive source of in-depth information provided on existing and emerging food technologies based on the electromagnetic spectrum  

Electromagnetic Technologies in Food Science examines various methods employed in food applications that are based on the entire electromagnetic (EM) spectrum. Focusing on recent advances and challenges in food science and technology, this is an up-to-date volume that features vital contributions coming from an international panel of experts who have shared both fundamental and advanced knowledge of information on the dosimetry methods, and on potential applications of gamma irradiation, electron beams, X-rays, radio and microwaves, ultraviolet, visible, pulsed light, and more. 

Organized into four parts, the text begins with an accessible overview of the physics of the electromagnetic spectrum, followed by discussion on the application of the EM spectrum to non-thermal food processing. The physics of infrared radiation, microwaves, and other advanced heating methods are then deliberated in detail—supported by case studies and examples that illustrate a range of both current and potential applications of EM-based methods. The concluding section of the book describes analytical techniques adopted for quality control, such as hyperspectral imaging, infrared and Raman spectroscopy. This authoritative book resource: 

  • Covers advanced theoretical knowledge and practical applications on the use of EM spectrum as novel methods in food processing technology 
  • Discusses the latest progress in developing quality control methods, thus enabling the control of continuous fast-speed processes  
  • Explores future challenges and benefits of employing electromagnetic spectrum in food technology applications 
  • Addresses emerging processing technologies related to improving safety, preservation, and overall quality of various food commodities 

Electromagnetic Technologies in Food Science is an essential reading material for undergraduate and graduate students, researchers, academics, and agri-food professionals working in the area of food preservation, novel food processing techniques and sustainable food production. 

List of Contributors
xv
Foreword xix
Preface xxi
1 Physics of the Electromagnetic Spectrum
1(32)
Michael Vollmer
1 Introduction
1(1)
2 Description of Electromagnetic Waves
2(5)
2.1 Properties of Waves
2(3)
2.2 Spectrum of Electromagnetic Waves
5(2)
3 Propagation of Electromagnetic Waves: Geometrical Versus Wave Optics
7(3)
4 Description of Particle Properties of Electromagnetic Radiation
10(1)
5 Exponential Attenuation of Electromagnetic Radiation in Matter
11(3)
6 Microscopic Structure of Matter and Origin of EM Radiation
14(9)
6.1 UV-VIS and Atomic Spectra
14(2)
6.2 IR and Molecular Spectra
16(2)
6.3 X-Rays and Excitations of Inner Electrons in Atoms
18(1)
6.4 Y Ravs and Nuclear Spectra
19(1)
6.5 Blackbody Radiation: Generating UV, VIS, and IR Radiation from Hot Objects
20(1)
6.6 Generation of Microwave and RF EM Waves
21(2)
1 Interaction of EM Radiation with Food
23(8)
7.1 Low Frequencies: RF and Microwaves
23(1)
7.2 IR Radiation
24(1)
7.3 Visible and UV Radiation
25(2)
7.4 X-Rays and y-Radiation
27(1)
7.4.1 Atomic Photo Effect
27(1)
7.4.2 Compton Effect
28(1)
7.4.3 Pair Generation Effect
28(1)
7.4.4 Probabilities for Absorbing High-Energy Radiation
29(1)
7.4.5 Consequence of Absorption of High-Energy Photons by Matter
29(2)
8 Outlook
31(2)
References
31(2)
2 Dosimetry in Food Irradiation
33(20)
Bhaskar Sanyat
Sunil K. Ghosh
1 Introduction
33(1)
2 Fundamentals of Dosimetry
34(3)
2.1 What is Dosimetry
35(1)
2.2 Absorbed Dose
35(1)
2.3 Physical Aspects of Radiation Absorption
36(1)
2.3.1 Photoelectric Effect
36(1)
2.3.2 Compton Scattering
36(1)
2.3.3 Pair Production
36(1)
2.3.4 Interaction of Charged Particles
37(1)
3 Dosimetry Systems for Food Irradiation Application
37(6)
3.1 Characterization of Dosimetry Systems
39(1)
3.1.1 Calibrating the Dosimetry System
39(1)
3.1.2 Establishing Traceability
39(1)
3.1.3 Determining Batch Homogeneity
40(1)
3.1.4 Determining Uncertainty in the Measured Dose Value
40(1)
3.1.5 Understanding and Quantifying Effects of the Influencing Quantities
40(1)
3.2 Specific Dosimetry Systems for Food Irradiation Applications
41(1)
3.2.1 Chemical Dosimeter (Fricke and Ceric-cerous Sulphate)
41(1)
3.2.2 Alanine Dosimeter
42(1)
3.2.3 Radiochromic Dosimeter
42(1)
3.3 Role of Product Density in the Absorbed Dose
43(1)
4 Dosimetry in Food Irradiation Facility
43(6)
4.1 Dosimetry in Radionuclide-Based Irradiation Facility
44(1)
4.1.1 Dose Mapping Experiment
44(2)
4.1.2 Routine Processing of Food Product
46(1)
4.2 Dosimetry in Linear Accelerator (LINAC) Facility
46(3)
5 Emerging Field of Dosimetry in Low-Energy Accelerator Irradiator for Surface Treatment of Food
49(1)
6 Conclusion and Future Outlook
50(3)
References
51(2)
3 Gamma Irradiation
53(21)
Xuetong Fan
Brendan A. Niemira
1 Introduction
53(1)
2 Characteristics and Generation of y-rays
54(2)
3 Compton Effect
56(1)
4 Basic Effects on Food: Interaction of y-rays with Matter
57(2)
5 Dose Unit, Dose Rate, and Dose Distribution
59(1)
6 Y-ray Facility
60(1)
7 Applications of y-ray Radiation in Foods
60(6)
7.1 Improving Microbial Safety
61(2)
1.2 Preservation of Food
63(1)
7.3 Phytosanitary Treatment
64(1)
7.4 Applications on Low-Moisture Foods
64(1)
7.5 Potential Uses of γ Irradiation for Degradation of Mycotoxin and Allergen
65(1)
8 Factors Impacting the Efficacy of γ-rays
66(1)
8.1 Temperature
66(1)
8.2 Atmosphere
66(1)
8.3 Water Activity
67(1)
8.4 Composition of Foods (Antioxidants)
67(1)
9 Conclusion
67(7)
Acknowledgments
68(1)
References
68(6)
4 Electron Beams
74(31)
Rajeev Bhat
Benny P. George
Vicente M. Gomez-Lopez
1 Introduction
74(2)
2 Accelerator as a Source of Ionizing Radiation
76(1)
3 Working Principle of EB Accelerator
77(1)
4 Types of Industrial Electron Accelerators
77(1)
5 Classification of Industrial Electron Beam (EB) Accelerators
78(1)
6 Absorbed Dose
78(1)
7 Radiation Dosimetry
79(3)
7.1 Theoretical Aspect of EB Dosimetry
79(1)
7.2 Practical Aspect of EB Dosimetry
79(1)
7.3 Dosimetry Systems
80(1)
7.4 Calibration of Dosimetry Systems
81(1)
7.4.1 Performance Check of Measuring Instruments
81(1)
7.4.2 Calibration of Routine Dosimeters
81(1)
7.4.3 Establishing Measurement Traceability to National/International Standards
82(1)
8 Scanning Characteristics of the Electron Beam Accelerator
82(1)
9 Depth Dose Profile of Electron Beam
82(1)
10 Process Validation of Industrial EB Accelerator
83(3)
10.1 Installation Qualification (IQ)
84(1)
10.2 Operational Qualification (OQ)
85(1)
10.3 Performance Qualification (PQ)
85(1)
10.4 Routine Monitoring
86(1)
11 EB Irradiation in Food Applications
86(7)
11.1 Mechanism
93(1)
12 Legislations on Electron Beams Application
93(3)
13 Conclusions and Future Outlook
96(9)
Acknowledgements
97(1)
Conflict of Interest Statement
97(1)
References
97(8)
5 X-Rays
105(23)
Francesco E. Ricciardi
Amalia Conte
Matteo A. Del Nobile
1 Introduction
105(1)
1.1 Thermal and Non-thermal Technologies
105(2)
1.2 Irradiation Technology
107(2)
1.3 X-Rays
109(1)
2 Mechanism of Action of X-Rays
109(2)
3 Case Study
111(8)
3.1 Seafood Products
111(4)
3.2 Fresh and Dried Fruit
115(1)
3.3 Dairy Products
116(2)
3.4 Meat-Based Foods
118(1)
4 Effects of X-Rays on Packaging
119(1)
5 Regulation of X-Ray Irradiation
120(2)
6 Conclusion and Future Outlook
122(6)
References
122(6)
6 Ultraviolet Light
128(53)
Sandra N. Guerrero
Mariana Ferrario
Marcela Schenk
Daniela Fenoglio
Antonella Andreone
1 Introduction
128(2)
2 Characterization of UV-C Dose
130(4)
3 Rational Use of the Hurdle Approach in the Design of Food Preservation Technologies
134(36)
3.1 UV-C light-based Hurdle Combinations
136(1)
3.1.1 Heat
136(17)
3.1.2 UV-C Combined with Other Novel Technologies
153(9)
3.1.3 UV-C Combined with the Addition of Natural Antimicrobials
162(2)
3.1.4 UV-C Combined with Sanitizers
164(6)
4 Conclusions and Future Perspectives
170(11)
Acknowledgments
171(1)
References
171(10)
7 Visible Light
181(19)
Laura M. Hinds
Mysore L. Bhavya
Colm P. O'Donnell
Brijesh K. Tiwari
1 Introduction
181(1)
2 Sources
182(1)
3 Quantifying Light Treatment
183(1)
4 Applications of Visible Light in the Food Industry
184(10)
4.1 Postharvest Handling
184(2)
4.2 Food Safety
186(8)
5 Challenges and Limitations
194(1)
6 Conclusion
194(6)
References
194(6)
8 Pulsed Light
200(20)
Vicente M. Gomez-Lopez
Rajeev Bhat
Jose A. Pellicer
1 Introduction
200(1)
2 Pulsed Light as a Technology Based on the Electromagnetic Spectrum
201(1)
3 Photochemistry and Photophysics Laws
202(1)
4 Factors Affecting Efficacy
203(1)
5 Pulsed Light Systems
204(1)
6 Effect on Microorganisms
205(2)
6.1 Action Spectrum
205(1)
6.2 Inactivation Mechanism
205(1)
6.3 Photoreactivation
206(1)
6.4 Sublethal Injury
207(1)
6.5 Viable but Non-culturable State
207(1)
7 Inactivation of Enzymes
207(1)
8 Inactivation of Allergens
208(1)
9 Effect on Lipids
209(1)
10 Effect on Health-Related Compounds
209(1)
11 Effect on Vitamin D
210(1)
12 Effect on Pesticides
210(1)
13 Energy Efficiency
211(1)
14 Legislations (Regulations and Safety) of Pulsed Light
211(1)
15 Conclusions and Future Outlook
212(8)
Conflict of Interest Statement
212(1)
References
212(8)
9 Infrared Radiation
220(34)
Yvan Llave
Noboru Sakai
1 Introduction
220(1)
2 Fundamentals and Theory of Infrared Radiation
221(8)
2.1 Principles of Infrared Radiation Heating
221(1)
2.1.1 Infrared Wavelength
221(1)
2.1.2 Basics Laws of Infrared Radiation
222(2)
2.2 Characteristics of Thermal Radiation
224(1)
2.2.1 Types of Infrared Radiation
224(1)
2.2.2 Heat Generation
224(1)
2.2.3 Sources of Infrared Heating
224(2)
2.3 Special Features of Infrared Radiation
226(1)
2.3.1 Factors Related to the Penetration of IR
226(1)
2.3.2 Advantages of IR Processing
226(1)
2.3.3 Limitations of Infrared Radiation Processing
227(1)
2.4 Interaction of Infrared Radiation with Food
227(1)
2.4.1 Fundamentals of Interaction with Foods
227(1)
2.4.2 Selective Infrared Radiation Absorption of Foods
228(1)
3 Infrared Radiative Properties of Food Materials
229(1)
3.1 Attenuation of Radiation
229(1)
3.2 Properties Related to the Radiative Heat Transfer of Foods
230(1)
4 Applications of Infrared Radiation in Food Processing
230(8)
4.1 Traditional Applications for Foods
230(1)
4.1.1 Infrared Radiation Drying
230(1)
4.1.2 Infrared Radiation Pasteurization
231(1)
4.1.3 Infrared Radiation Grilling, Broiling, and Roasting
231(1)
4.1.4 Infrared Radiation Blanching
231(4)
4.1.5 Infrared Radiation Baking
235(1)
4.1.6 Infrared Radiation Cooking
235(1)
4.2 Rough Rice Drying
235(1)
4.3 Fruit and Vegetable Peeling
236(1)
4.4 Disinfestation and Pest Management
236(2)
4.5 Surface Disinfection in the Food Industry
238(1)
5 Integrated Heating Technologies
238(4)
5.1 Infrared Radiation and Convective Heating
239(1)
5.2 Infrared Radiation and Microwave Heating
240(1)
5.3 Infrared Radiation and Freeze-Drying
241(1)
5.4 Infrared Radiation and Vacuum Drying
241(1)
6 Mathematical Modeling and Simulations
242(5)
6.1 Basics of Computer Simulations of Infrared Radiation Processes
242(1)
6.1.1 Moisture Transfer
243(1)
6.1.2 Heat Transfer
243(1)
6.1.3 Boundary Conditions
243(1)
6.2 Heat and Mass Transfer Modeling of the Infrared Radiation Heating of Foods
244(1)
6.3 Computer Simulations of Novel IR Heating Applications of Foods
244(3)
7 Future Research to Enhance Practical Applications of Infrared Heating
247(1)
8 Conclusions and Future Outlook
247(7)
References
248(6)
10 Microwaves
254(18)
Rifna E. Jerome
Madhuresh Dwivedi
1 Introduction
254(2)
2 Microwave Heating Mechanism and Principle
256(5)
2.1 Dielectric Properties of Food Product
256(3)
2.2 Factors Affecting Microwave Heating
259(1)
2.2.1 Moisture Content and Temperature Dependency
259(1)
2.2.2 Effect of Composition of Food Product
259(1)
2.2.3 Effect of Microwave Frequency
260(1)
2.2.4 Product Parameters
260(1)
2.3 Non-uniformity in Temperature Distribution
260(1)
3 Microwave Application in Food Industries
261(4)
3.1 Microwave-Assisted Cooking and Baking
261(1)
3.2 Microwave-assisted Drying
262(1)
3.3 Microwave-Assisted Blanching
263(1)
3.4 Microwave-Assisted Microbial Inactivation
263(1)
3.5 Microwave-Assisted Extraction
264(1)
4 Safety of Food Processed in Microwave for Consumers
265(1)
5 Merits and De-merits of Microwave Heating Applications
265(1)
6 Conclusion and Outlook
266(6)
References
266(6)
11 Radio Frequency
272(26)
Shunshan Jiao
Eva Salazar
Shaojin Wang
1 Introduction
272(1)
2 Principle of RF Heating
273(2)
2.1 Dielectric Properties
273(1)
2.2 Governing Equation
274(1)
2.3 Penetration Depth
275(1)
3 Applications of RF Heating in Food Processing
275(13)
3.1 Thawing
275(2)
3.2 Drying
277(2)
3.3 Disinfestation
279(1)
3.3.1 For Fresh Fruits
279(2)
3.3.2 For Grains
281(1)
3.3.3 For Dried Fruits and Nuts
282(1)
3.4 Microbial Inactivation
283(1)
3.4.1 For Fruits and Vegetables
283(1)
3.4.2 For Meat, Poultry Dairy, and Aquatic Products
283(1)
3.4.3 For Grains, Nuts, and Spices
284(1)
3.5 Enzyme Inactivation
285(1)
3.5.1 Blanching
285(2)
3.5.2 Stabilization
287(1)
4 Conclusions and Future Outlook
288(10)
References
289(9)
12 Infrared Spectroscopy
298(12)
Daniel Cozzolino
1 Introduction
298(1)
2 The Electromagnetic Radiation
299(2)
3 Sample Presentation
301(1)
4 Mid-Infrared Spectroscopy - Instrumentation
302(1)
5 Near-Infrared Spectroscopy - Instrumentation
303(1)
6 Portability (Handheld Instruments)
304(1)
1 Hyperspectral and Multispectral Image
304(2)
8 Conclusions and Outlook
306(4)
Acknowledgments
307(1)
Conflict of Interest
307(1)
References
307(3)
13 Raman Spectroscopy
310(27)
Dana Alina Magdas
Camelia Berghian-Grosan
1 Introduction
310(1)
2 Raman Applications in Food and Beverages Studies
311(17)
2.1 Honey
311(4)
2.2 Edible Oils
315(6)
2.3 Wines
321(4)
2.4 Fruit Spirits
325(3)
3 Conclusions and Future
328(9)
Contribution Statement
329(1)
Acknowledgments
329(1)
Conflict of Interest
329(1)
References
329(8)
14 Visible Light Imaging
337(26)
Maimunah Mohd Ali
Norhashila Hashim
1 Introduction
337(1)
2 Principle of Visible Light Imaging
338(3)
2.1 Development and Instrumentation
338(1)
2.2 Hardware-Orientated Color System
339(1)
2.3 Image Processing and Analysis
340(1)
3 Applications of Visible Light Imaging in Food
341(12)
3.1 Fruits and Vegetables
341(3)
3.2 Meat, Fish, and Poultry
344(3)
3.3 Nuts, Grains, and Dairy Products
347(2)
3.4 Fats and Oils
349(2)
3.5 Processed Foods
351(2)
4 Advantages and Limitations
353(1)
5 Future Trends
354(1)
6 Conclusions and Outlook
355(8)
Acknowledgment
356(1)
Conflict of Interest
356(1)
References
356(7)
15 Hyperspectral Imaging
363(28)
Antoni Femenias
Sonia Marin
1 Introduction
363(1)
2 Fundamentals of the Hyperspectral Imaging
364(2)
3 Image Calibration
366(1)
4 Spectral Pre-processing
367(1)
5 Model Calibration
367(2)
6 Characteristic Wavelengths Extraction
369(1)
7 Model Validation
369(1)
8 Application of HSI for Plant Products Quality Assessment
370(6)
8.1 Discrimination According to Quality Parameters
371(3)
8.2 Quantification of Quality Parameters
374(2)
9 Application of HSI for Safety Assessment in Fruits and Vegetables
376(1)
10 Application of HSI for Microbiological Quality and Safety Assessment in Cereals, Nuts, and Dried Fruits
377(14)
10.1 Assessment of Fungal Damage
377(2)
10.2 Assessment of Mycotoxin Contamination
379(1)
10.2.1 Anatoxins
379(3)
10.2.2 Fusarium Toxins
382(1)
II Conclusions and Future Outlook
383(1)
Acknowledgments
383(1)
References
384(7)
16 Future Challenges of Employing Electromagnetic Spectrum
391(20)
Bibhuti B. Mishra
Prasad S. Variyar
1 Introduction
391(2)
2 Challenges in y Irradiation Processing of Food
393(3)
2.1 Sources of Radiation: Cobalt 60 and Cesium 137, Electron Beam, and X-ray
393(1)
2.2 Scope for Future Research in y Radiation
394(2)
2.3 Economic Considerations for Setting Up Facilities
396(1)
3 Challenges in Using UV Light for Processing of Food
396(2)
3.1 Design of UV Processing Equipment
397(1)
3.2 UV for Disinfestation of Contact Surfaces in Food Processing Facilities
398(1)
4 Challenges in Using Infrared (IR) for Processing of Food
398(4)
4.1 Limitations of Infrared Processing
399(1)
4.2 Selection of Infrared Emitters for Drying Applications
399(1)
4.3 Future Scopes for IR Lamp Design Features
399(1)
4.4 Novel IR Filament Material
400(1)
4.5 Future of IR Drying
400(1)
4.6 Scopes for Near-infrared (NIR) Spectroscopy in Industrial Food Processing
401(1)
5 Challenges in Microwave Processing of Food
402(2)
5.1 Microwave Cooking
402(1)
5.2 Microwave Blanching
403(1)
5.3 Microwave Pasteurization/Sterilization
403(1)
5.4 Microwave-assisted Drying
403(1)
5.5 Microwave-assisted Freeze Drying
404(1)
5.6 Future of Applications of Microwave
404(1)
6 Future Scopes for Radiofrequency Processing of Food
404(2)
6.1 Improvement of RF-H Uniformity
405(1)
6.2 Future Research on RF Heating Applications in Food
405(1)
7 Current Problems and Future Prospects of Tetrahertz (THz) Technology
406(1)
8 Regulations for Use of EM Spectrum
406(1)
9 Conclusion and Outlook
407(4)
References
408(3)
Index 411
About the Editors

Vicente M. Gómez-López is Professor and Senior Scientist at the Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain.

Rajeev Bhat is Professor and ERA-Chair Holder in Food By-products Valorization Technologies (VALORTECH) at the Estonian University of Life Sciences (EMÜ), Tartu, Estonia.