Atjaunināt sīkdatņu piekrišanu

Electromagnetics and Calculation of Fields Softcover reprint of the original 2nd ed. 1997 [Mīkstie vāki]

  • Formāts: Paperback / softback, 565 pages, height x width: 235x155 mm, weight: 890 g, XVII, 565 p., 1 Paperback / softback
  • Izdošanas datums: 08-Oct-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461268605
  • ISBN-13: 9781461268604
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 75,00 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 565 pages, height x width: 235x155 mm, weight: 890 g, XVII, 565 p., 1 Paperback / softback
  • Izdošanas datums: 08-Oct-2012
  • Izdevniecība: Springer-Verlag New York Inc.
  • ISBN-10: 1461268605
  • ISBN-13: 9781461268604
Citas grāmatas par šo tēmu:
Intended for undergraduate students of electrical engineering, this introduction to electromagnetic fields emphasizes the computation of fields as well as the development of theoretical relations. The first part thus presents the electromagnetic field and Maxwell's equations with a view toward connecting the disparate applications to the underlying relations, while the second part presents computational methods of solving the equations - which for most practical calses cannot be solved analytically.

Papildus informācija

Springer Book Archives
Preface v
Part I The Electromagnetic Field and Maxwell's Equations
1 Mathematical Preliminaries
1.1 Introduction
1(1)
1.2 The Vector Notation
1(1)
1.3 Vector Derivation
2(1)
1.3.1 The Nabla (V) Operator
2(1)
1.3.2 Definition of the Gradient, Divergence, and Curl
2(1)
1.4 The Gradient
3(3)
1.4.1 Example of Gradient
5(1)
1.5 The Divergence
6(6)
1.5.1 Definition of Flux
6(2)
1.5.2 The Divergence Theorem
8(1)
1.5.3 Conservative Flux
9(2)
1.5.4 Example of Divergence
11(1)
1.6 The Curl
12(6)
1.6.1 Circulation of a Vector
12(2)
1.6.2 Stokes Theorem
14(3)
1.6.3 Example of Curl
17(1)
1.7 Second Order Operators
18(1)
1.8 Application of Operators to More than One Function
19(1)
1.9 Expressions in Cylindrical and Spherical Coordinates
20(2)
2 The Electromagnetic Field and Maxwell's Equations
2.1 Introduction
22(1)
2.2 Maxwell's Equations
22(21)
2.2.1 Fundamental Physical Principles of the Electromagnetic Field
23(6)
2.2.2 Point Form of the Equations
29(3)
2.2.3 The Equations in Vacuum
32(2)
2.2.4 The Equations in Media with ζ=ζ0 and μ=μ0
34(1)
2.2.5 The Equations in General Media
35(2)
2.2.6 The Integral Form of Maxwell's Equations
37(6)
2.3 Approximations to Maxwell's Equations
43(2)
2.4 Units
45(2)
3 Electrostatic Fields
3.1 Introduction
47(1)
3.2 The Electrostatic Charge
47(6)
3.2.1 The Electric Field
48(1)
3.2.2 Force on an Electric Charge
48(1)
3.2.3 The Electric Scalar Potential
49(4)
3.3 Nonconservative Fields: Electromotive Force
53(2)
3.4 Refraction of the Electric Field
55(4)
3.5 Dielectric Strength
59(2)
3.6 The Capacitor
61(4)
3.6.1 Definition of Capacitance
61(3)
3.6.2 Energy Stored in a Capacitor
64(1)
3.6.3 Energy in a Static, Conservative Field
64(1)
3.7 Laplace's and Poisson's Equations in Terms of the Electric Field
65(2)
3.8 Examples
67(7)
3.8.1 The Infinite Charged Line
67(3)
3.8.2 The Charged Spherical Half-Shell
70(1)
3.8.3 The Spherical Capacitor
71(1)
3.8.4 The Spherical Capacitor with Two Dielectric Layers
72(2)
3.9 A Brief Introduction to the Finite Element Method: Solution of the Two-Dimensional Laplace Equation
74(14)
3.9.1 The Finite Element Technique for Division of a Domain
75(2)
3.9.2 The Variational Method
77(3)
3.9.3 A Finite Element Program
80(4)
3.9.4 Example for Use of the Finite Element Program
84(4)
3.10 Tables of Permittivities, Dielectric Strength, and Conductivities
88(2)
4 Magnetostatic Fields
4.1 Introduction
90(1)
4.2 Maxwell's Equations in Magnetostatics
91(3)
4.2.1 The Equation VxH=J
91(2)
4.2.2 The Equation V. B=0
93(1)
4.2.3 The Equation VxE=0
93(1)
4.3 The Biot-Savart Law
94(2)
4.4 Boundary Conditions for the Magnetic Field
96(2)
4.5 Magnetic Materials
98(17)
4.5.1 Diamagnetic Materials
99(1)
4.5.2 Paramagnetic Materials
100(1)
4.5.3 Ferromagnetic Materials
100(4)
4.5.4 Permanent Magnets
104(11)
4.6 The Analogy between Magnetic and Electric Circuits
115(4)
4.7 Inductance and Mutual Inductance
119(4)
4.7.1 Definition of Inductance
119(1)
4.7.2 Energy in a Linear System
120(2)
4.7.3 The Energy Stored in the Magnetic Field
122(1)
4.8 Examples
123(15)
4.8.1 Calculation of Field Intensity and Inductance of a Long Solenoid
123(2)
4.8.2 Calculation of H for a Circular Loop
125(2)
4.8.3 Field of a Rectangular Loop
127(1)
4.8.4 Calculation of Inductance of a Coaxial Cable
128(1)
4.8.5 Calculation of the Field Inside a Cylindrical Conductor
129(1)
4.8.6 Calculation of the Magnetic Field Intensity in a Magnetic Circuit
130(3)
4.8.7 Calculation of the Magnetic Field Intensity of a Saturated Magnetic Circuit
133(2)
4.8.8 Magnetic Circuit Incorporating Permanent Magnets
135(3)
4.9 Laplace's Equation in Terms of the Magnetic Scalar Potential
138(2)
4.10 Properties of Soft Magnetic Materials
140(2)
5 Magnetodynamic Fields
5.1 Introduction
142(1)
5.2 Maxwell's Equations for the Magnetodynamic Field
143(3)
5.3 Penetration of Time Dependent Fields in Conducting Materials
146(7)
5.3.1 The Equation for H
146(1)
5.3.2 The Equation for B
147(1)
5.3.3 The Equation for E
147(1)
5.3.4 The Equation for J
148(1)
5.3.5 Solution of the Equations
148(5)
5.4 Eddy Current Losses in Plates
153(3)
5.5 Hysteresis Losses
156(4)
5.6 Examples
160(15)
5.6.1 Induced Currents Due to Change in Induction
160(3)
5.6.2 Induced Currents Due to Changes in Geometry
163(2)
5.6.3 Inductive Heating of a Conducting Block
165(4)
5.6.4 Effect of Movement of a Magnet Relative to a Flat Conductor
169(2)
5.6.5 Visualization of Penetration of Fields as a Function of Frequency
171(1)
5.6.6 The Voltage Transformer
172(3)
6 Interaction between Electromagnetic and Mechanical Forces
6.1 Introduction
175(1)
6.2 Force on a Conductor
175(3)
6.3 Force on Moving Charges: The Lorentz Force
178(2)
6.4 Energy in the Magnetic Field
180(2)
6.5 Force as Variation of Energy (Virtual Work)
182(2)
6.6 The Poynting Vector
184(4)
6.7 Maxwell's Force Tensor
188(7)
6.8 Examples
195(17)
6.8.1 Force between Two Conducting Segments
195(3)
6.8.2 Torque on a Loop
198(2)
6.8.3 The Hall Effect
200(2)
6.8.4 The Linear Motor and Generator
202(3)
6.8.5 Attraction of a Ferromagnetic Body
205(1)
6.8.6 Repulsion of a Diamagnetic Body
206(1)
6.8.7 Magnetic Levitation
207(2)
6.8.8 The Magnetic Brake
209(3)
7 Wave Propagation and High-Frequency Electromagnetic Fields
7.1 Introduction
212(3)
7.2 The Wave Equation and Its Solution
215(12)
7.2.1 The Time Dependent Equations
215(5)
7.2.2 The Time Harmonic Wave Equations
220(2)
7.2.3 Solution of the Wave Equation
222(1)
7.2.4 Solution for Plane Waves
222(1)
7.2.5 The One-Dimensional Wave Equation in Free Space and Lossless Dielectrics
223(4)
7.3 Propagation of Waves in Materials
227(6)
7.3.1 Propagation of Waves in Lossy Dielectrics
227(2)
7.3.2 Propagation of Plane Waves in Low-Loss Dielectrics
229(1)
7.3.3 Propagation of Plane Waves in Conductors
230(2)
7.3.4 Propagation in a Conductor: Definition of the Skin Depth
232(1)
7.4 Polarization of Plane Waves
233(2)
7.5 Reflection, Refraction, and Transmission of Plane Waves
235(14)
7.5.1 Reflection and Transmission at a Lossy Dielectric Interface: Normal Incidence
236(3)
7.5.2 Reflection and Transmission at a Conductor Interface: Normal Incidence
239(1)
7.5.3 Reflection and Transmission at a Finite Conductivity Conductor Interface
240(1)
7.5.4 Reflection and Transmission at an Interface: Oblique Incidence
241(1)
7.5.5 Oblique Incidence on a Conducting Interface: Perpendicular Polarization
242(2)
7.5.6 Oblique Incidence on a Conducting Interface: Parallel Polarization
244(1)
7.5.7 Oblique Incidence on a Dielectric Interface: Perpendicular Polarization
245(3)
7.5.8 Oblique Incidence on a Dielectric Interface: Parallel Polarization
248(1)
7.6 Waveguides
249(9)
7.6.1 TEM, TE, and TM Waves
249(2)
7.6.2 TEM Waves
251(1)
7.6.3 TE Waves
251(1)
7.6.4 TM Waves
252(1)
7.6.5 Rectangular Waveguides
253(1)
7.6.6 TM Modes in Waveguides
253(3)
7.6.7 TE Modes in Waveguides
256(2)
7.7 Cavity Resonators
258(7)
7.7.1 TM and TE Modes in Cavity Resonators
259(2)
7.7.2 TE Modes in a Cavity
261(1)
7.7.3 Energy in a Cavity
261(2)
7.7.4 Quality Factor of a Cavity Resonator
263(1)
7.7.5 Coupling to Cavities
263(2)
Part II Introduction to the Finite Element Method in Electromagnetics
8 Introduction to the Finite Element Method
8.1 Introduction
265(1)
8.2 The Galerkin Method - Basic Concepts
266(11)
8.3 The Galerkin Method - Extension to 2D
277(4)
8.3.1 The Boundary Conditions
278(1)
8.3.2 Calculation of the 2D Elemental Matrix
279(2)
8.4 The Variational Method - Basic Concepts
281(3)
8.5 The Variational Method - Extension to 2D
284(7)
8.5.1 The Variational Formulation
284(5)
8.5.2 Calculation of the 2D Elemental Matrix
289(2)
8.6 Generalization of the Finite Element Method
291(15)
8.6.1 High-Order Finite Elements: General
292(1)
8.6.2 High-Order Finite Elements: Notation
293(3)
8.6.3 High-Order Finite Elements: Implementation
296(2)
8.6.4 Continuity of Finite Elements
298(1)
8.6.5 Polynomial Basis
298(2)
8.6.6 Transformation of Quantities - the Jacobian
300(2)
8.6.7 Evaluation of the Integrals
302(4)
8.7 Numerical Integration
306(7)
8.7.1 Evaluation of the Integrals
306(1)
8.7.2 Basic Principles of Numerical Integration
307(4)
8.7.3 Accuracy and Errors in Numerical Integration
311(2)
8.8 Some Specific Finite Elements
313(10)
8.8.1 ID Elements
314(1)
8.8.2 2D Elements
315(3)
8.8.3 3D Elements
318(5)
8.9 Coupling Different Finite Elements: Infinite Elements
323(4)
8.9.1 Coupling Different Types of Finite Elements
323(2)
8.9.2 Infinite Elements
325(2)
8.10 Calculation of Some Terms in Poisson's Equation
327(3)
8.10.1 The Stiffness Matrix
327(2)
8.10.2 Evaluation of the Second Term in Eq. (8.130)
329(1)
8.10.3 Evaluation of the Third Term in Eq. (8.130)
329(1)
8.10.4 Evaluation of the Source Term
330(1)
8.11 A Simplified 2D Second-Order Finite Element Program
330(13)
8.11.1 The Problem to Be Solved
330(2)
8.11.2 The Discretized Domain
332(1)
8.11.3 The Finite Element Program
333(10)
9 The Variational Finite Element Method: Some Static Applications
9.1 Introduction
343(1)
9.2 Some Static Applications
343(10)
9.2.1 Electrostatic Fields: Dielectric Materials
343(2)
9.2.2 Stationary Currents: Conducting Materials
345(1)
9.2.3 Magnetic Fields: Scalar Potential
346(1)
9.2.4 The Magnetic Field: Vector Potential
347(5)
9.2.5 The Electric Vector Potential
352(1)
9.3 The Variational Method
353(9)
9.3.1 The Variational Formulation
354(1)
9.3.2 Functional Involving Scalar Potentials
355(4)
9.3.3 The Vector Potential Functionals
359(3)
9.4 The Finite Element Method
362(4)
9.5 Application of Finite Elements with the Variational Method
366(7)
9.5.1 Application to the Electrostatic Field
367(3)
9.5.2 Application to the Case of Stationary Currents
370(1)
9.5.3 Application to the Magnetic Field: Scalar Potential
370(1)
9.5.4 Application to the Magnetic Field: Vector Potential
371(2)
9.5.5 Application to the Electric Vector Potential
373(1)
9.6 Assembly of the Matrix System
373(2)
9.7 Axi-Symmetric Applications
375(8)
9.8 Nonlinear Applications
383(4)
9.8.1 Method of Successive Approximation
383(1)
9.8.2 The Newton-Raphson Method
384(3)
9.9 The Three-Dimensional Scalar Potential
387(3)
9.9.1 The First-Order Tetrahedral Element
388(1)
9.9.2 Application of the Variational Method
389(1)
9.9.3 Modeling of 3D Permanent Magnets
389(1)
9.10 Examples
390(10)
9.10.1 Calculation of Electrostatic Fields
391(1)
9.10.2 Calculation of Static Currents
392(2)
9.10.3 Calculation of the Magnetic Field: Scalar Potential
394(2)
9.10.4 Calculation of the Magnetic Field: Vector Potential
396(2)
9.10.5 Three-Dimensional Calculation of Fields of Permanent Magnets
398(2)
10 Galerkin's Residual Method: Applications to Dynamic Fields
10.1 Introduction
400(1)
10.2 Application to Magnetic Fields in Anisotropic Media
401(4)
10.3 Application to 2D Eddy Current Problems
405(27)
10.3.1 First-Order Element in Local Coordinates
405(4)
10.3.2 The Vector Potential Equation Using Time Discretization
409(8)
10.3.3 The Complex Vector Potential Equation
417(3)
10.3.4 Structures with Moving Parts
420(2)
10.3.5 The Axi-Symmetric Formulation
422(3)
10.3.6 A Modified Complex Vector Potential Formulation for Wave Propagation
425(2)
10.3.7 Formulation of Helmholtz's Equation
427(3)
10.3.8 Advantages and Limitations of 2D Formulations
430(2)
10.4 Application of the Newton-Raphson Method
432(2)
10.5 Examples
434(11)
10.5.1 Eddy Currents: Time Discretization
434(3)
10.5.2 Moving Conducting Piece in Front of an Electromagnet
437(3)
10.5.3 Modes and Fields in a Waveguide
440(2)
10.5.4 Resonant Frequencies of a Microwave Cavity
442(3)
11 Hexahedral Edge Elements - Some 3D Applications
11.1 Introduction
445(3)
11.2 The Hexahedral Edge Element Shape Functions
448(8)
11.3 Construction of the Shape Functions
456(4)
11.4 Application of Edge Elements to Low-Frequency Maxwell's Equations
460(12)
11.4.1 Static Cases
461(3)
11.4.2 Listing of the Matrix Construction Code
464(2)
11.4.3 Modeling of Permanent Magnets
466(1)
11.4.4 Eddy Currents - the Time-Stepping Procedure
466(2)
11.4.5 Eddy Currents - The Complex Formulation
468(1)
11.4.6 The Newton-Raphson Method
469(2)
11.4.7 The Divergence of J and Other Particulars
471(1)
11.5 Modeling of Waveguides and Cavity Resonators
472(1)
11.6 Examples
473(11)
11.6.1 Static Calculations (TEAM Problem 13)
474(1)
11.6.2 A Linear Motor with Permanent Magnets
475(2)
11.6.3 Eddy Current Calculations (TEAM Problem 21)
477(3)
11.6.4 Calculation of Resonant Frequencies (TEAM Problem 19)
480(4)
12 Computational Aspects in Finite Element Software Implementation
12.1 Introduction
484(1)
12.2 Geometric Repetition of Domains
484(3)
12.2.1 Periodicity
484(2)
12.2.2 Anti-Periodicity
486(1)
12.3 Storage of the Coefficient Matrix
487(3)
12.3.1 Symmetry of the Coefficient Matrix
487(1)
12.3.2 The Banded Matrix and Its Storage
487(2)
12.3.3 Compact Storage of the Matrix
489(1)
12.4 Insertion of Dirichlet Boundary Conditions
490(1)
12.5 Quadrilateral and Hexahedral Elements
491(2)
12.6 Methods of Solution of the Linear System
493(7)
12.6.1 Direct Methods
493(4)
12.6.2 Iterative Methods
497(3)
12.7 Methods of Solution for Eigenvalues and Eigenvectors
500(6)
12.7.1 The Jacobi Transformation
500(3)
12.7.2 The Givens Transformation
503(1)
12.7.3 The QR and QZ Methods
504(2)
12.8 Diagram of a Finite Element Program
506(3)
13 General Organization of Field Computation Software
13.1 Introduction
509(1)
13.2 The Pre-Processor Module
510(6)
13.2.1 The User/System Dialogue
510(1)
13.2.2 Domain Discretization
511(5)
13.3 The Processor Module
516(1)
13.4 The Post-Processor Module
517(7)
13.4.1 Visualization of Results
517(2)
13.4.2 Calculation of Numerical Results
519(5)
13.5 The Computational Organization of a Software Package
524(4)
13.5.1 The EFCAD Software
525(3)
13.6 Evolving Software
528(19)
13.6.1 The Adaptive Mesh Method
528(5)
13.6.2 A Coupled Thermal/Electrical System
533(4)
13.6.3 A Software Package for Electrical Machines
537(4)
13.6.4 A System for Simultaneous Solution of Field Equations and External Circuits
541(6)
13.6.5 Computational Difficulties and Extensions to Field Computation Packages
547(1)
13.7 Recent Trends
547(2)
Bibliography 549(10)
Subject Index 559