Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electromigration In Ulsi Interconnections

(Ntu, S'pore)
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 39,45 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Electromigration in ULSI Interconnections provides a comprehensive description of the electromigration in integrated circuits. It is intended for both beginner and advanced readers on electromigration in ULSI interconnections. It begins with the basic knowledge required for a detailed study on electromigration, and examines the various interconnected systems and their evolution employed in integrated circuit technology. The subsequent chapters provide a detailed description of the physics of electromigration in both Al- and Cu-based Interconnections, in the form of theoretical, experimental and numerical modeling studies. The differences in the electromigration of Al- and Cu-based interconnections and the corresponding underlying physical mechanisms for these differences are explained.The test structures, testing methodology, failure analysis methodology and statistical analysis of the test data for the experimental studies on electromigration are presented in a concise and rigorous manner. Methods of numerical modeling for the interconnect electromigration and their applications to the understanding of electromigration physics are described in detail with the aspects of material properties, interconnection design, and interconnect process parameters on the electromigration performances of interconnects in ULSI further elaborated upon. Finally, the extension of the studies to narrow interconnections is introduced, and future challenges on the study of electromigration are outlined and discussed.
Foreword vii
Preface xiii
1 Introduction 1(10)
1.1 What is Electromigration?
1(1)
1.2 Importance of Electromigration
2(4)
1.3 Outlines of this Book
6(5)
2 History of Electromigration 11(26)
2.1 Understanding the Physics of Electromigration
11(11)
2.1.1 Quantum mechanical theory of electromigration
11(5)
2.1.2 Practical engineering electromigration formulation
16(4)
2.1.3 Concept of flux divergence
20(2)
2.2 Electromigration Lifetime Modeling
22(7)
2.3 Electromigration Lifetime Improvement
29(1)
2.4 Electromigration Aware IC Design
30(7)
3 Experimental Studies of Al Interconnections 37(106)
3.1 Introduction
37(1)
3.2 Process-Induced Failure Physics
38(16)
3.2.1 Microstructural inhomogeneities of metallization
38(4)
3.2.1.1 Grain size
40(1)
3.2.1.2 Grain size distribution
40(1)
3.2.1.3 Texture of a metal line
41(1)
3.2.2 Presence of impurity
42(1)
3.2.3 Mechanical stress in the film
43(2)
3.2.4 Presence of defect
45(1)
3.2.4.1 Length dependence of lifetime
45(1)
3.2.4.2 Length dependence of the standard deviation of EM lifetime distribution
46(1)
3.2.5 Temperature gradient
46(5)
3.2.6 Material differences
51(1)
3.2.7 Temperature
52(2)
3.3 Design-Induced Failure Mechanisms
54(9)
3.3.1 Proximity of metal lines
54(1)
3.3.2 Inter-metal dielectric (IMD) thickness between metal lines and oxide thickness underneath the first metallization
54(1)
3.3.3 Number of metallization levels
54(1)
3.3.4 Use of barrier layers
55(3)
3.3.5 Via separation length
58(1)
3.3.6 Cornering of metal line and Step height of metal lines
59(1)
3.3.7 Use of passivation layer
59(2)
3.3.8 Metal width variation
61(1)
3.3.9 Reservoir effect
61(2)
3.4 Self-Induced Process During EM
63(4)
3.4.1 Self-induced stress gradient
63(1)
3.4.2 Self-induced temperature gradient
64(1)
3.4.3 Microstructure change of interconnect
65(2)
3.5 Electromigration Test Structure Design
67(10)
3.5.1 NIST test structure
68(5)
3.5.2 Test structure for multi-level metallization
73(4)
3.5.3 Test structure for bamboo structure
77(1)
3.6 Package-Level Electromigration Test (PET)
77(2)
3.7 Rapid Electromigration Test
79(24)
3.7.1 TRACE method
80(3)
3.7.2 Standard Wafer-level Electromigration Accelerated Test (SWEAT)
83(2)
3.7.3 Wafer-level isothermal Joule-heated electromigration test (WLTET)
85(2)
3.7.4 Wafer level constant current electromigration test (Lee, Tibel and Sullivan 2000)
87(1)
3.7.5 Breakdown energy of metal (BEM)
87(3)
3.7.6 Pitfalls of SWEAT
90(9)
3.7.7 Potential pitfalls of constant current test method
99(1)
3.7.8 Potential pitfall of breakdown energy method (BEM)
100(1)
3.7.9 Potential pitfalls of WLTET
100(1)
3.7.10 Summary
101(1)
3.7.11 Highly accelerated electromigration test
101(2)
3.8 Practical Consideration in Electromigration Testing
103(10)
3.8.1 Failure criteria used in EM testing
103(2)
3.8.2 Interpretation of the measured area
105(3)
3.8.3 Actual temperature of test strips
108(1)
3.8.4 Test structure used
109(1)
3.8.5 Current density used
109(1)
3.8.6 Short length effect
109(2)
3.8.7 Failure model used in EM accelerated testing (deviation from Black equation)
111(2)
3.9 Failure Modes in Electromigration
113(2)
3.9.1 Open/resistance increase
113(2)
3.9.2 Short
115(1)
3.10 Test Data Analysis
115(10)
3.11 Failure Analysis on EM Failures
125(8)
3.12 Conclusion
133(10)
4 Experimental Studies of Cu Interconnections 143(100)
4.1 Different in Interconnect Processing and its Impact on EM Physics
144(8)
4.2 Process-induced Failure Physics
152(50)
4.2.1 Interface between Cu and surrounding materials
152(10)
4.2.1.1 Surface engineering
153(3)
4.2.1.2 Alternative cap-layer materials
156(6)
4.2.2 Microstructure
162(11)
4.2.3 Presence of impurity
173(7)
4.2.4 Mechanical stress
180(11)
4.2.5 Barrier metal
191(8)
4.2.6 Presence of defects
199(1)
4.2.7 Temperature gradient
200(1)
4.2.8 Material differences
200(1)
4.2.9 Temperature
201(1)
4.3 Design-Induced Failure Mechanism
202(23)
4.3.1 Line width dependence of EM lifetime
202(6)
4.3.2 Current crowding
208(3)
4.3.3 Line width transition
211(1)
4.3.4 Reservoir effect
212(5)
4.3.5 Current direction dependence of EM lifetime
217(4)
4.3.6 Blech short length effect
221(3)
4.3.7 Via structure design
224(1)
4.4 Electromigration Testing
225(3)
4.5 Statistics of Cu Electromigration
228(15)
5 Numerical Modeling of Electromigration 243(26)
5.1 1D Continuum Electromigration Modeling
245(1)
5.2 2D EM Modeling
246(7)
5.2.1 Sharp interface model
248(3)
5.2.2 Phase field model
251(2)
5.3 Electromigration Simulation Using Atomic Flux Divergence and Finite Element Analaysis
253(7)
5.3.1 Computation methods for Atomic Flux Divergence (AFD)
254(6)
5.3.1.1 Formulation of AFD
254(3)
5.3.1.2 Voiding mechanism simulation
257(1)
5.3.1.3 Lifetime prediction
258(2)
5.4 Monte Carlo Simulation of Electromigration
260(4)
5.4.1 Monte Carlo simulation of the movement of atoms during EM
260(2)
5.4.2 Monte Carlo simulation of void movement during EM
262(1)
5.4.3 Holistic EM simulation
263(1)
5.5 Resistance Change Modeling
264(5)
6 Future Challenges 269(16)
6.1 Electromigration Modeling
269(2)
6.2 EDA Tool Development
271(3)
6.3 Physics of Electromigration
274(1)
6.4 Electromigration Testing
274(1)
6.5 New Failure Mechanism for Interconnects
275(2)
6.6 Alternative Interconnect Structure
277(1)
6.7 Alternative Interconnect System
278(7)
Index 285(6)
Biography 291