Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electron Backscatter Diffraction in Materials Science

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Izdošanas datums: 11-Mar-2010
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9780387881362
  • Formāts - PDF+DRM
  • Cena: 261,13 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 11-Mar-2010
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9780387881362

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Electron backscatter diffraction is a very powerful and relatively new materials characterization technique aimed at the determination of crystallographic texture, grain boundary character distributions, lattice strain, phase identification, and much more. The purpose of this book is to provide the fundamental basis for electron backscatter diffraction in materials science, the current state of both hardware and software, and illustrative examples of the applications of electron backscatter diffraction to a wide-range of materials including undeformed and deformed metals and alloys, ceramics, and superconductors.The text has been substantially revised from the first edition, and the authors have kept the format as close as possible to the first edition text. The new developments covered in this book include a more comphrensive coverage of the fundamentals not covered in the first edition or other books in the field, the advances in hardware and software since the first edition was published, and current examples of application of electron backscatter diffraction to solve challenging problems in materials science and condensed-matter physics.

Providing the fundamental basis for electron backscatter diffraction in materials science, this book analyzes the current state of both hardware and software, and gives examples of applications of electron backscatter diffraction to a wide-range of materials.
Present State of Electron Backscatter Diffraction and Prospective Developments
1(20)
Robert A. Schwarzer
David P. Field
Brent L. Adams
Mukul Kumar
Adam J. Schwartz
Introduction
1(1)
Generation and Interpretation of Electron Backscatter Diffraction Patterns
2(1)
Experimental Set-Up of an EBSD System
3(1)
The Components of an Automated EBSD System
4(3)
The Pattern Acquisition Device
4(1)
Mechanical Stage and Digital Beam Scanning
5(2)
Spatial Resolution
7(2)
SEM Specifications for Good EBSD Performance
9(2)
The Radon or Hough Transformation for Band Localization
11(1)
Indexing
12(1)
Fast EBSD
13(2)
Ion Blocking Patterns
15(4)
Conclusions
19(2)
Dynamical Simulation of Electron Backscatter Diffraction Patterns
21(14)
Aimo Winkelmann
Introduction
21(1)
Model of Electron Backscatter Diffraction
21(1)
Dynamical Electron Diffraction in EBSD
22(3)
Dynamical Electron Diffraction in EBSD
22(1)
Dynamical Electron Diffraction in EBSD
23(1)
Dynamical Electron Diffraction in EBSD
24(1)
Applications
25(7)
A Real-Space View of EBSD
25(2)
Full Scale Simulation of EBSD Patterns
27(1)
The Influence of the Energy Spectrum of the Backscattered Electrons
28(2)
Dynamical Effects of Anisotropic Backscattering
30(2)
Summary
32(3)
Representations of Texture
35(18)
Jeremy K. Mason
Christopher A. Schuh
Introduction
35(1)
Rotations and Orientations
36(2)
Defining a Rotation
36(1)
Defining an Orientation
37(1)
Pole Figures
38(2)
Discrete Orientations
40(6)
Axis-Angle Parameters
41(1)
Rodrigues Vectors
42(1)
Quaternions
42(3)
Euler Angles
45(1)
Orientation Distribution Functions
46(4)
Circular Harmonics
46(1)
Spherical Harmonics
47(1)
Hyperspherical Harmonics
48(1)
Generalized Spherical Harmonics
49(1)
Symmetrized Harmonics
49(1)
Conclusion
50(3)
Energy Filtering in EBSD
53(12)
Alwyn Eades
Andrew Deal
Abhishek Bhattacharyya
Tejpal Hooghan
Introduction
53(1)
Background
53(1)
Energy Filters
54(2)
Operating the Filter
56(1)
Early Results
57(3)
Patterns at Different Energies
60(1)
Localization of the Signal
61(1)
Future Energy Filters in EBSD
62(1)
Summary and Conclusions
62(3)
Spherical Kikuchi Maps and Other Rarities
65(16)
Austin P. Day
Introduction
65(1)
Electron Backscatter Patterns
65(1)
Spherical Kikuchi Maps
65(1)
EBSP Detectors
65(3)
EBSP Imaging and Uniformity
68(1)
EBSP Simulation
68(1)
Spherical Kikuchi Maps from EBSPs
68(4)
Kikuchi Band Profiles
72(2)
Spherical Kikuchi Map Inversion
74(1)
Uses for Spherical Kikuchi Maps
75(1)
Colour Orientation Contrast Images
76(1)
STEM in the SEM
76(1)
Unusual Features in EBSPs
77(4)
Application of Electron Backscatter Diffraction to Phase Identification
81(16)
Bassem El-Dasher
Andrew Deal
Introduction
81(1)
Considerations for Phase ID with EBSD
82(2)
Case Studies
84(13)
Simultaneous EBSD/EDS Phase Discrimination
85(1)
Distinguishing γ and γ' in Ni Superalloys
86(3)
Volume Fraction Determination in a Multiphase Alloy
89(8)
Phase Identification Through Symmetry Determination in EBSD Patterns
97(12)
David J. Dingley
S. I. Wright
Introduction
97(1)
Basis of the Phase Identification Method
97(1)
Determination of the Crystal Unit Cell
98(2)
Discovering the Lattice Symmetry
100(1)
Re-Indexing the Pattern According to the Discovered Crystal Class
101(1)
Examples
102(4)
Case 1, A Cubic Crystal
102(2)
Case 2, A Hexagonal Crystal
104(1)
Case 3, A Trigonal Crystal
104(2)
Discussion
106(3)
Three-Dimensional Orientation Microscopy by Serial Sectioning and EBSD-Based Orientation Mapping in a FIB-SEM
109(14)
Stefan Zaefferer
Stuart I. Wright
Introduction
109(1)
The Geometrical Set-Up for 3D Characterisation in a FIB-SEM
110(3)
Automatic 3D Orientation Microscopy
113(1)
Software for 3D Data Analysis
113(1)
Application Examples
114(5)
The 3D Microstructure and Crystallography of Pearlite Colonies
114(1)
Microstructure of ``Nanocrystalline'' NiCo Deposits
115(4)
Discussion
119(1)
Accuracy and Application Limits
119(1)
Materials Issues
120(1)
Conclusions
120(3)
Collection, Processing, and Analysis of Three-Dimensional EBSD Data Sets
123(16)
Michael A. Groeber
David J. Rowenhorst
Michael D. Uchic
Introduction
123(1)
Data Collection
123(1)
Processing Strategies
124(5)
Registration and Alignment of Sections
124(2)
Segmentation of Grains
126(1)
Clean-Up Routines
127(2)
Analysis Capabilities
129(6)
Morphological Descriptors
129(4)
Crystallographic Descriptors
133(2)
Summary
135(4)
3D Reconstruction of Digital Microstructures
139(16)
Stephen D. Sintay
Michael A. Groeber
Anthony D. Rollett
Motivation
139(1)
Background
139(1)
2D-3D Inference
139(1)
3D Polycrystal Microstructure Generation
140(1)
Data Collection and Analysis
140(1)
Data Sources
140(1)
Identifying Features
141(1)
Statistical Description of Features
141(1)
Methods for 3D Structure Inference
141(6)
Monte Carlo-Based Histogram Fitting
143(2)
Observation-Based Domain Constraint
145(2)
Generation of 3D Structure
147(2)
Packing of Ellipsoids
147(2)
Relaxation of Boundaries
149(1)
Quality Analysis
149(2)
Size Distribution Comparison
149(1)
Shape Distribution Comparison
149(2)
Neighborhood Comparison
151(1)
Boundary Structure Comparison
151(1)
Thoughts on Current Conditions and Future Work
151(4)
Direct 3D Simulation of Plastic Flow from EBSD Data
155(14)
Nathan R. Barton
Joel V. Bernier
Ricardo A. Lebensohn
Anthony D. Rollett
Introduction
155(1)
Material and Microstructural Model
156(3)
Three-Dimensional Microstructure Generation
157(1)
Micromechanical Model
158(1)
Finite Element Model
159(1)
Simulation Results
159(3)
Directions for Further Computational Development
162(3)
Conclusions
165(4)
First-Order Microstructure Sensitive Design Based on Volume Fractions and Elementary Bounds
169(8)
Surya R. Kalidindi
David T. Fullwood
Brent L. Adams
Introduction
169(1)
Quantification of Microstructure
170(1)
Microstructure Sensitive Design Framework
170(2)
Property Closures
172(5)
Second-Order Microstructure Sensitive Design Using 2-Point Spatial Correlations
177(12)
David T. Fullwood
Surya R. Kalidindi
Brent L. Adams
Introduction
177(1)
Definition and Properties of the 2-Point Correlation Functions
178(3)
Boundary Conditions
179(1)
Properties of the 2-Point Functions
179(1)
Visualization of the 2-Point Functions
179(1)
Metrics from 2-Point Correlations
180(1)
Collecting 2-Point Correlations from Material Samples
180(1)
Structure Property Relations
181(5)
Localization Tensors
182(2)
Effective Tensors
184(2)
Microstructure Design
186(3)
Combinatorial Materials Science and EBSD: A High Throughput Experimentation Tool
189(12)
Krishna Rajan
Introduction
189(1)
Introduction to Combinatorial Methods
189(7)
High Throughput EBSD Screening
190(4)
Informatics and Data
194(2)
Summary
196(5)
Grain Boundary Networks
201(14)
Bryan W. Reed
Christopher A. Schuh
Introduction
201(1)
Measurement and Classification of Local Network Elements
202(2)
General Definitions for Single Boundaries
202(1)
Structures with More than One Boundary
203(1)
Geometry of the Network Structure
204(4)
Percolation Measures of the Grain Boundary Network
205(1)
Crystallographic Constraints
206(2)
Microstructure-Property Connections
208(4)
Composite Averaging vs. Percolation Theory
209(2)
Crystallographic Correlations
211(1)
Conclusions and Future Outlook
212(3)
Measurement of the Five-Parameter Grain Boundary Distribution from Planar Sections
215(16)
Gregory S. Rohrer
Valerie Randle
Introduction: Grain Boundary Planes and Properties
215(1)
Serial Sectioning
216(1)
Single-Surface Trace Analysis
217(1)
Five-Parameter Stereological Analysis
218(6)
Parameterization and Discretization of the Space of Grain Boundary Types
218(1)
Measurement of the Grain Boundary Characterization Distribution
219(2)
Performance of the Stereological Analysis
221(2)
Comparison GBCDs Measured Stereologically and by Serial Sectioning in the Dual Beam FIB
223(1)
Examples of Five-Parameter Analyses
224(7)
Strain Mapping Using Electron Backscatter Diffraction
231(20)
Angus J. Wilkinson
David J. Dingley
Graham Meaden
Introduction
231(3)
The Need for Local Strain Assessment
231(1)
Competing Strain Mapping Techniques
231(1)
Review of Applications of EBSD to Analysis of Elastic Strains
232(2)
Cross-Correlation-Based Analysis of EBSD Patterns
234(13)
Geometry: Linking Pattern Shifts to Strain
234(1)
Pattern Shift Measurement
235(2)
Sensitivity Analysis
237(2)
Illustrative Applications
239(8)
Concluding Remarks
247(4)
Mapping and Assessing Plastic Deformation Using EBSD
251(12)
Luke N. Brewer
David P. Field
Colin C. Merriman
Plastic Deformation Effects on the EBSD Pattern and Orientation Map
251(2)
Pattern Rotation Approaches
253(10)
Mapping Orientations and Misorientations
253(2)
Average Misorientation Approaches
255(3)
Measurement and Calculation of GND Densities
258(5)
Analysis of Deformation Structures in FCC Materials Using EBSD and TEM Techniques
263(14)
Oleg V. Mishin
Andrew Godfrey
Dorte Juul Jensen
Introduction
263(2)
Orientation Noise in EBSD Data
265(3)
A Quantitative Description of Orientation Noise
265(1)
Postprocessing Orientation Filtering Operations
266(2)
Quantitative TEM-EBSD Comparison
268(3)
Heterogeneity in Microstructural Refinement
271(2)
Analysis of Local Heterogeneity
271(1)
Potential for Analysis of Large-Scale Heterogeneities
272(1)
Summary and Conclusions
273(4)
Application of EBSD Methods to Severe Plastic Deformation (SPD) and Related Processing Methods
277(14)
Terry R. McNelley
Alexandre P. Zhilyaev
Srinivasan Swaminathan
Jianqing Su
E. Sarath Menon
Introduction
277(1)
Microstructures During the Initial ECAP Pass
278(4)
Microstructures Developed by Machining
282(2)
Grain Refinement During FSP
284(4)
Conclusions
288(3)
Applications of EBSD to Microstructural Control in Friction Stir Welding/Processing
291(10)
Sergey Mironov
Yutaka S. Sato
Hiroyuki Kokawa
Introduction
291(1)
Brief Explanations of FSW/P Terminology
292(1)
Microstructural Evolution
292(4)
Material Flow
296(2)
Structure-Properties Relationship
298(1)
Summary and Future Outlook
299(2)
Characterization of Shear Localization and Shock Damage with EBSD
301(16)
John F. Bingert
Veronica Livescu
Ellen K. Cerreta
Introduction
301(1)
Shear Localization
302(7)
Constrained Shear in Pure Fe---Shear Zone Geometry
302(4)
Constrained Shear in Pure Fe---Texture Development
306(1)
Effect of Morphology on Grain Instability in Cu
307(2)
Shock Loading Damage in Tantalum
309(4)
Effect of Shock Duration on Incipient Spall Structure
310(3)
Effect of Pressure on Incipient Spall Structure
313(1)
Conclusions
313(4)
Texture Separation for α/β Titanium Alloys
317(12)
Ayman A. Salem
Introduction
317(1)
Microstracture of α/β Titanium Alloys
317(1)
Texture of Ti-6A1-4V
318(2)
Separation of Primary and Secondary Alpha Texture
319(1)
EBSD + BSE Imaging Technique
319(1)
EBSD or XRD + Heat Treatment Technique
320(1)
Texture Separation Using EBSD + EDS Technique
320(2)
Texture Separation Using EBSD + EDS Technique
320(1)
Microstructure Observations
321(1)
Chemical Composition Maps (EDS)
321(1)
Industrial Application: Controlling Texture During Hot-Rolling of Ti-6A1-4V
322(4)
Microstructure Evolution
323(1)
Overall Texture Evolution
323(1)
Primary-Alpha (αp) Textures
324(1)
Secondary-Alpha (αs) Texture
325(1)
Industrial Application: Controlling Texture During Hot-Rolling of Ti-6A1-4V
326(3)
A Review of In Situ EBSD Studies
329(10)
Stuart I. Wright
Matthew M. Nowell
Introduction
329(1)
In Situ Postmortem Experiments
330(1)
Deformation Stage Experiments
331(1)
Heating Stage Experiments
332(3)
Phase Transformation
332(1)
Recrystallization and Grain Growth
333(2)
Combined Heating and Tensile Stage Experiments
335(1)
Conclusions
335(4)
Electron Backscatter Diffraction in Low Vacuum Conditions
339(6)
Bassem S. El-Dasher
Sharon G. Torres
Introduction
339(1)
Considerations for Low Vacuum EBSD
340(1)
Example Applications
341(4)
Microstructural Analysis of AIN-TiB2 Ceramic Composite
341(1)
Characterization of CaHPO4-2H2O Single Crystals
342(3)
EBSD in the Earth Sciences: Applications, Common Practice, and Challenges
345(16)
David J. Prior
Elisabetta Mariani
John Wheeler
Development of EBSD in Earth Sciences
345(1)
Current Practice, Capabilities, and Limitations
346(5)
Range of Materials and Preparation
346(1)
Speed of Data Collection
347(1)
Spatial Resolution
347(1)
Misindexing
348(2)
Polyphase Samples
350(1)
Application of EBSD in Earth Sciences
351(6)
Rock Deformation and Solid Earth Geophysics
352(3)
Metamorphic Processes
355(1)
Meteorites
356(1)
Other Areas
356(1)
Conclusions
357(4)
Orientation Imaging Microscopy in Research on High Temperature Oxidation
361(34)
Bae-Kyun Kim
Jerzy A. Szpunar
Introduction
361(1)
High Temperature Oxidation
362(1)
Experimental Procedure
363(5)
Oxidation of Samples and Oxide Formation
363(1)
Sample Preparation and Geometry in OIM
364(1)
Microstructure and Texture Measurement
365(1)
Oxidation of Low Carbon Steel
365(3)
Results and Discussion
368(16)
Grain Growth in Iron Oxide
368(3)
Effect of the Oxidation Process on Microstructure
371(2)
Oxidation of Pure Iron
373(11)
Cracks and Defects
384(6)
Conclusion
390(5)
Index 395
Adam J. Schwartz is the Deputy Division Leader for Condensed Matter and High Pressure Physics in the Physics and Advanced Technologies Directorate. Dr. Schwartz joined LLNL as a post-doctoral research associate to investigate the systematics of displacive phase transformations after receiving his PhD from the University of Pittsburgh in 1991. His areas of interests focus on structure-propoerty-processing relations, aging and phase transformations in actinides; influence of microstructure and impurities on high-strain rate deformation behavior, texture and texture gradients in materials, intercrystalline defects and the role of grain boundary character distribution in materials, conventional and high resolution transmission electron microscopy, and electron backscatter diffraction. Dr. Schwartz has authored over 50 publications and has one patent.









Mukul Kumar joined as a staff scientist in the Materials Science and Technology Division in 1998 after completing a stint as a post-doctoral fellow at Johns Hopkins University. Prior to that, he received his PhD from the University of Cincinnati, where he was an Oak Ridge Institute for Science and Engineering Fellow and also received the ASM International Arthur Focke Award for his dissertation work. His areas of interest include the relationship between properties and microstructures, particularly as related to extreme environments encountered in turbine jet engine and nuclear reactor environments and high strain rate and pressure conditions; defect analysis using conventional transmission electron microscopy; and electron backscatter diffraction. Kumar has authored over 70 publications and has two patents.