Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electron Paramagnetic Resonance

(Reader, Department of Chemistry, University of York), (Professor of Physical Chemistry, Cardiff University), (Postdoctoral Research Associate, Cardiff University)
  • Formāts: 159 pages
  • Sērija : Oxford Chemistry Primers
  • Izdošanas datums: 01-Dec-2016
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780191073809
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 38,38 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 159 pages
  • Sērija : Oxford Chemistry Primers
  • Izdošanas datums: 01-Dec-2016
  • Izdevniecība: Oxford University Press
  • Valoda: eng
  • ISBN-13: 9780191073809
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The renowned Oxford Chemistry Primer series, which provides focused introductions to a range of important topics in chemistry, has been refreshed and updated to suit the needs of today's students, lecturers, and postgraduate researchers. The rigorous, yet accessible, treatment of each subject area is ideal for those wanting a primer in a given topic to prepare them for more advanced study or research. The learning features provided, including questions at the end of every chapter and online multiple-choice questions, encourage active learning and promote understanding. Moreover, cutting-edge examples and applications throughout the texts show the relevance to current research and industry of the chemistry being described.

Electronic Paramagnetic Resonance provides a user-friendly introduction to this powerful tool for characterizing paramagnetic molecules. A versatile technique, EPR is becoming increasingly used across fields as diverse as biology, materials science, chemistry, and physics. This primer provides the perfect introduction to the subject by taking the reader through from basic principles to how spectra can be interpreted in practice, with frequent examples demonstrating the diverse ways in which the technique can be applied.

Online Resources The online resources to accompany Electron Paramagnetic Resonance feature:

For registered adopters of the text: · Figures from the book available to download

For students: · Full worked solutions to the end-of-chapter exercises · Multiple-choice questions for self-directed learning

Recenzijas

Good sets of sample spectra to illustrate the underlying principles. * Dr Tien-Sung Tom Lin, Washington University in St. Louis * Combines a sound theoretical basis with a hands-on approach and useful advice for practical work. * Prof. Dr. Gunnar Jeschke, ETH Zürich, Switzerland *

Preface v
1 A brief overview of Electron Paramagnetic Resonance spectroscopy
1(6)
1.1 Introduction
1(1)
1.2 The EPR technique
2(2)
1.3 The origins
4(1)
1.4 The EPR spectrum
4(1)
1.5 The scope and applications of EPR
5(1)
1.6 Summary
6(1)
2 Theory of continuous wave (CW) EPR spectroscopy
7(10)
2.1 Introduction
7(1)
2.2 Angular momentum and electron magnetic moment
7(3)
2.3 Measurement of the g value
10(1)
2.4 The nuclear spin and hyperfine interaction
10(4)
2.5 Spin relaxation mechanisms
14(1)
2.6 Summary
15(1)
2.7 Exercises
16(1)
3 Experimental methods in CW EPR
17(8)
3.1 Introduction
17(1)
3.2 Hardware components
17(2)
3.3 Experimental settings
19(4)
3.4 Sample preparation
23(1)
3.5 Summary
24(1)
3.6 Exercises
24(1)
4 Isotropic EPR spectra of organic radicals
25(17)
4.1 Introduction
25(1)
4.2 Isotropic hyperfine interaction
25(4)
4.3 Localized and delocalized radicals
29(1)
4.4 Assignment of complex EPR spectra
29(3)
4.5 Obtaining structural information from the hyperfine constants
32(4)
4.6 Generation and detection of organic free radicals
36(4)
4.7 Summary
40(1)
4.8 Exercises
41(1)
5 Anisotropic EPR spectra in the solid state
42(19)
5.1 Introduction
42(1)
5.2 The anisotropic g tensor
43(3)
5.3 The qualitative representation of g(θ, φ)
46(7)
5.4 The anisotropic hyperfine A interaction
53(3)
5.5 The anisotropic quadrupole P interaction
56(1)
5.6 Combinations of g and A anisotropy
57(2)
5.7 Summary
59(1)
5.8 Exercises
59(2)
6 Transition metal ions and inorganic radicals
61(15)
6.1 Introduction
61(1)
6.2 Transition metal ions
61(6)
6.3 Non-coincidence of g and A axes
67(2)
6.4 Superhyperfine interaction
69(1)
6.5 Inorganic radicals
70(4)
6.6 Summary
74(1)
6.7 Exercises
75(1)
7 Systems with multiple unpaired electrons
76(11)
7.1 Introduction
76(1)
7.2 Exchange interaction
76(4)
7.3 Dipole--dipole interaction
80(2)
7.4 Organic triplets
82(1)
7.5 Dipolar interaction in diradicals and similar multielectron systems
82(1)
7.6 Transition metal ions with S > 1/2
83(2)
7.7 Summary
85(1)
7.8 Exercises
86(1)
8 Linewidth of EPR spectra
87(9)
8.1 Introduction
87(1)
8.2 Types of line broadening
87(2)
8.3 Effect of dynamic processes on the EPR linewidth
89(3)
8.4 Lifetime of spin states
92(1)
8.5 Inhomogeneous broadening
92(1)
8.6 Spin labels and probes
93(1)
8.7 Summary
94(1)
8.8 Exercises
94(2)
9 Advanced EPR techniques
96(15)
9.1 Introduction
96(1)
9.2 Electron Nuclear DOuble Resonance (ENDOR) spectroscopy
96(6)
9.3 Two-pulse and three-pulse Electron Spin Echo Envelope Modulation (ESEEM)
102(2)
9.4 Hyperfine Sublevel Correlation (HYSCORE) spectroscopy
104(1)
9.5 Pulsed Electron DOuble Resonance (PELDOR) spectroscopy
105(2)
9.6 Orientation selective hyperfine measurements
107(3)
9.7 Summary
110(1)
9.8 Exercises
110(1)
Bibliography 111(1)
Appendices 112(3)
Index 115
Dr Victor Chechik is a Reader at the Department of Chemistry, University of York. He has taught EPR spectroscopy to undergraduates the University of York for 9 years.

Dr Emma Carter is a Postdoctoral Research Associate at Cardiff University. Dr Carter has authored 35 peer-reviewed papers, and contributes to the RSC Specialist Periodical Report [ Electron Paramagnetic Resonance]. She has co-supervised several postgraduate students and teaches an introductory EPR course to final year undergraduate students.

Professor Damien Murphy is a Professor of Physical Chemistry and currently Director of Research in the School of Chemistry, at Cardiff University. He has supervised twenty PhD students, is module convenor for two advanced spectroscopy undergraduate courses, and has delivered EPR/ENDOR undergraduate lectures at Cardiff University for the last 15 years.