Atjaunināt sīkdatņu piekrišanu

Electronic Structure Methods for Complex Materials: The orthogonalized linear combination of atomic orbitals [Hardback]

(Department of Physics, University of Missouri, Kansas City), (Department of Physics, University of Missouri, Kansas City)
  • Formāts: Hardback, 326 pages, height x width x depth: 248x196x25 mm, weight: 790 g, 180 b/w illustrations
  • Izdošanas datums: 17-May-2012
  • Izdevniecība: Oxford University Press
  • ISBN-10: 0199575800
  • ISBN-13: 9780199575800
  • Hardback
  • Cena: 178,26 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
    • Oxford Scholarship Online e-books
  • Formāts: Hardback, 326 pages, height x width x depth: 248x196x25 mm, weight: 790 g, 180 b/w illustrations
  • Izdošanas datums: 17-May-2012
  • Izdevniecība: Oxford University Press
  • ISBN-10: 0199575800
  • ISBN-13: 9780199575800
Density functional theory (DFT) has blossomed in the past few decades into a powerful tool that is used by experimentalists and theoreticians alike. This book highlights the extensive contributions that the DFT-based OLCAO method has made to progress in this field, and it demonstrates its competitiveness for performing ab initio calculations on large and complex models of practical systems. A brief historical account and introduction to the elements of the theory set the stage for discussions on semiconductors, insulators, crystalline metals and alloys, complex crystals, non-crystalline solids and liquids, microstructure containing systems and those containing impurities, defects, and surfaces, biomolecular systems, and the technique of ab initio core level spectroscopy calculation.
1 Electronic Structure Methods in Materials Theory
1(5)
1.1 Introduction
1(1)
1.2 One electron methods
2(1)
1.3 Quantum chemical approaches and solid state methods
3(1)
1.4 The OLCAO method
3(3)
2 Historical Account of the LCAO Method
6(8)
2.1 Early days of the band theory of solids
6(1)
2.2 Origin of the LCAO method
7(1)
2.3 Use of Gaussian orbitals in LCAO calculations
8(2)
2.4 Beginning of the OLCAO method
10(1)
2.5 Current status and future trends of the OLCAO method
11(3)
3 Basic Theory and Techniques of the OLCAO Method
14(21)
3.1 The atomic basis functions
14(4)
3.2 Bloch functions and the Kohn-Sham equation
18(3)
3.3 The site-decomposed potential function
21(3)
3.4 The technique of Gaussian transformation
24(4)
3.5 The technique of core orthogonalization
28(3)
3.6 Brillouin zone integration
31(1)
3.7 Special advantages in the OLCAO method
32(3)
4 Calculation of Physical Properties Using the OLCAO Method
35(18)
4.1 Band structure and band gap
35(2)
4.2 Density of states and its partial components
37(1)
4.3 Effective charges, bond order, and the localization index
38(2)
4.4 Spin-polarized band structures
40(1)
4.5 Scalar relativistic corrections and spin-orbit coupling
41(3)
4.6 Magnetic properties
44(1)
4.7 Linear optical properties and dielectric functions
45(2)
4.8 Conductivity function in metals
47(2)
4.9 Non-linear optical properties of insulators
49(1)
4.10 Bulk properties and geometry optimization
50(3)
5 Application to Semiconductors and Insulators
53(37)
5.1 Elemental and binary semiconductors
53(2)
5.2 Binary insulators
55(2)
5.3 Oxides
57(13)
5.3.1 Binary oxides
57(5)
5.3.2 Ternary oxides
62(5)
5.3.3 Laser host crystals
67(2)
5.3.4 Quaternary oxides and other complex oxides
69(1)
5.4 Nitrides
70(7)
5.4.1 Binary nitrides
70(3)
5.4.2 Spinel nitrides
73(2)
5.4.3 Ternary and quaternary nitrides and oxynitrides
75(1)
5.4.4 Other complex nitrides
76(1)
5.5 Carbides
77(2)
5.5.1 SiC
77(2)
5.5.2 Other carbides
79(1)
5.6 Boron and boron compounds
79(4)
5.6.1 Elemental boron
79(2)
5.6.2 B4C
81(1)
5.6.3 Other boron compounds
82(1)
5.6.4 Other forms of complex boron compounds
83(1)
5.7 Phosphates
83(7)
5.7.1 Simple phosphates: A1PO4
83(1)
5.7.2 Complex phosphates: KTP
84(1)
5.7.3 Lithium iron phosphate: LiFePO4
84(6)
6 Application to Crystalline Metals and Alloys
90(24)
6.1 Elemental metals and alloys
90(5)
6.1.1 Elemental metals
90(1)
6.1.2 Fe borides
91(1)
6.1.3 Fe nitrides
92(2)
6.1.4 Yttrium iron garnet
94(1)
6.2 Permanent hard magnets
95(7)
6.2.1 Application to R2Fe14B crystals
96(1)
6.2.2 Further applications to Nd2Fe14B
97(3)
6.2.3 Application to Re2Fe17 and related phases
100(2)
6.3 High Tc superconductors
102(5)
6.3.1 YBCO superconductor
102(2)
6.3.2 Other oxide superconductors
104(2)
6.3.3 Non-oxide superconductors
106(1)
6.4 Other recent studies on metals and alloys
107(7)
6.4.1 Mo-Si-B alloys
108(1)
6.4.2 MAX phases
109(5)
7 Application to Complex Crystals
114(28)
7.1 Carbon-related systems
114(6)
7.1.1 Bucky-ball (C60) and alkali-doped C60 crystals
114(4)
7.1.2 Negative curvature graphitic carbon structures
118(2)
7.2 Graphene, graphite, and carbon nanotubes
120(5)
7.2.1 Graphene and graphite
120(1)
7.2.2 Carbon nanotubes
121(4)
7.3 Polymeric crystals
125(3)
7.4 Organic crystals
128(8)
7.4.1 Organic superconductors
128(3)
7.4.2 Fe-TCNE
131(2)
7.4.3 Herapathite crystal
133(3)
7.5 Bioceramic crystals
136(6)
7.5.1 Calcium apatite crystals
136(1)
7.5.2 α and β-tricalcium phosphate
137(5)
8 Application to Non-Crystalline Solids and Liquids
142(29)
8.1 Amorphous Si and a-SiO2
142(5)
8.1.1 Amorphous Si and hydrogenated a-Si
142(1)
8.1.2 Amorphous SiO2 and a-SiOx glasses
143(3)
8.1.3 Other glassy systems
146(1)
8.2 Metallic glasses
147(7)
8.2.1 CuxZrl---x metallic glass
147(1)
8.2.2 Other metallic glasses
148(2)
8.2.3 Transport properties in metallic glasses
150(2)
8.2.4 Recent efforts on metallic glasses
152(2)
8.3 Intergranular glassy films
154(8)
8.3.1 The basal model
154(3)
8.3.2 The prismatic model
157(3)
8.3.3 Prismatic-basal model (Yoshiya model)
160(2)
8.4 Model of bulk water
162(3)
8.5 Models for molten salts: NaCl and KCI
165(3)
8.6 Models for concrete
168(3)
9 Application to Impurities, Defects, and Surfaces
171(26)
9.1 Isolated vacancies and substitutional impurities
171(6)
9.1.1 Isolated vacancies
171(2)
9.1.2 Single impurities or dopants
173(4)
9.2 Vacancies and impurities in MgAl2O4 (spinel)
177(5)
9.2.1 Strategy
177(2)
9.2.2 Effect of inversion
179(1)
9.2.3 Effect of isolated vacancies
179(2)
9.2.4 Effect of Fe substitution
181(1)
9.3 Impurity vacancy complexes
182(3)
9.4 Grain boundary models
185(5)
9.4.1 Grain boundaries in α-Al2O3
185(2)
9.4.2 Passive defects
187(2)
9.4.3 Grain boundary in SrTiO3
189(1)
9.5 Surfaces
190(4)
9.6 Interfaces
194(3)
10 Application to Biomolecular Systems
197(16)
10.1 Vitamin B12 cobalamins
197(6)
10.2 b-DNA models
203(3)
10.3 Collagen models
206(5)
10.4 Other biomolecular systems
211(2)
11 Application to Core Level Spectroscopy
213(28)
11.1 Basic principles of the supercell OLCAO method
213(4)
11.2 Select examples
217(16)
11.2.1 Simple crystals
217(3)
11.2.2 Complex crystals
220(3)
11.2.3 Y-K edge in different local environments
223(1)
11.2.4 Boron and boron-rich compounds
224(2)
11.2.5 Substitutional defects in crystals
226(2)
11.2.6 Biomolecular systems
228(1)
11.2.7 Application to grain boundaries and surfaces
229(2)
11.2.8 Application to intergranular glassy films
231(2)
11.2.9 Statistical description of O-K edges in bulk water
233(1)
11.3 Spectral imaging
233(4)
11.3.1 Introduction
233(1)
11.3.2 Procedures for SI
234(1)
11.3.3 Application to a Si defect model
235(2)
11.4 Further development of the supercell OLCAO method
237(4)
12 Enhancement and Extension of the OLCAO Method
241(19)
12.1 Versatility
241(9)
12.1.1 The OLCAO basis set
241(2)
12.1.2 The OLCAO potential and charge density representation
243(1)
12.1.3 Relativistic OLCAO
244(1)
12.1.4 Exchange-correlation functional
245(1)
12.1.5 Magnetism and non-collinear spin polarization
246(1)
12.1.6 Configuration interaction
246(2)
12.1.7 Hamaker constants and long-range van der Waals-London interaction
248(2)
12.2 Efficiency
250(5)
12.2.1 The memory hierarchy
250(1)
12.2.2 Modularization
251(1)
12.2.3 Parallelization
252(3)
12.3 Ease of use
255(5)
12.3.1 User interface and control
256(1)
12.3.2 Interaction with third party software
257(1)
12.3.3 Data visualization
258(2)
Appendices
A Database for Atomic Basis Functions
260(5)
B Database for Initial Atomic Potential Functions
265(5)
C Current Implementation of the OLCAO Suite
270(27)
C.1 Introduction
270(1)
C.2 Input generation
271(11)
C.3 Program execution
282(13)
C.4 Results analysis
295(2)
D Examples of Computational Statistics
297(4)
Index 301
Wai-Yim Ching is Curators' Professor of Physics at the University of Missouri, Kansas City.



Paul Rulis is an Assistant Professor of Physics at the University of Missouri, Kansas City.