Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electronics for Embedded Systems

  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Apr-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319394398
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 19-Apr-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319394398
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.

Fundamentals of Passive Circuit Analysis.- Diode and Bipolar Transistor Circuits.- MOS Transistors and CMOS Circuits.- TTL Logic and CMOS-TTL Interface.- Physics of Sensors.- Operational Amplifiers and Circuits.- Data Converters.- Front-End Electronics for Embedded Systems.- Review of Combinational and Sequential Logic Circuits and Design.
1 Fundamentals of Passive Circuit Analysis
1(32)
1.1 Laplace Transform
1(1)
1.2 Definitions of Passive Elements
1(2)
1.3 Time-Domain Analysis of First Order Passive Circuits
3(9)
1.3.1 RC Circuits
3(3)
1.3.2 RL Circuits
6(6)
1.4 First Order Passive Circuit Analysis Using Natural Frequencies
12(2)
1.5 Time-Domain Analysis of Second Order Passive Circuits
14(5)
1.6 Transfer Function and Circuit Stability
19(14)
2 Diode and Bipolar Transistor Circuits
33(24)
2.1 A Brief Review of Semiconductors
33(3)
2.2 PN Junction
36(2)
2.3 Rectifying Diode Circuits
38(4)
2.4 Zener Diode Circuits
42(1)
2.5 Light Emitting Diode (LED)
42(1)
2.6 Bipolar Transistors
43(2)
2.7 Bipolar Transistor Circuits
45(12)
3 MOS Transistors and CMOS Circuits
57(32)
3.1 N-Channel MOSFET (NMOSFET)
57(2)
3.2 P-Channel MOSFET (PMOSFET)
59(3)
3.3 Complementary MOS (CMOS) Inverter
62(1)
3.4 Two-Input CMOS NAND Logic Gate
63(2)
3.5 Two-Input CMOS NOR Logic Gate
65(1)
3.6 Complex CMOS Logic Gate Implementation
66(6)
3.7 Rise and Fall Times
72(1)
3.8 Rise and Fall Delays
73(16)
4 TTL Logic and CMOS-TTL Interface
89(34)
4.1 TTL Inverter
89(4)
4.2 TTL Inverter with Open Collector
93(4)
4.3 Two-Input TTL Nand Logic Gate
97(2)
4.4 Two-Input TTL NOR Logic Gate
99(3)
4.5 Input Current and Voltage Measurements of a Logic Gate
102(1)
4.6 Output Current and Voltage Measurements of a Logic Gate
103(1)
4.7 TTL-CMOS Interface with a Pull-up Resistor
104(4)
4.8 TTL-CMOS Interface with a Bipolar Transistor
108(7)
4.9 CMOS-TTL Interface with a Pull-Down Resistor
115(3)
4.10 CMOS-TTL Interface with a Bipolar Transistor
118(5)
5 Physics of Sensors
123(12)
5.1 Thermocouple
123(2)
5.2 Photodiode
125(2)
5.3 Solar Cell
127(2)
5.4 Photo-resistor
129(1)
5.5 Piezoelectric Materials and Accelerometers
129(3)
5.6 Hall-Effect Devices
132(3)
6 Operational Amplifiers and Circuits
135(22)
6.1 Operational Amplifier Properties
135(1)
6.2 Voltage Amplifier Circuits for Sensors
135(9)
6.3 Trans-resistance Amplifier Circuits for Sensors
144(2)
6.4 Analog Voltage Comparator
146(1)
6.5 Schmitt Trigger
147(3)
6.6 Square Waveform Generator
150(7)
7 Data Converters
157(18)
7.1 Analog-to-Digital Converter Principles
157(3)
7.2 Sample and Hold Principle
160(1)
7.3 Flash Type Analog-to-Digital Converter
160(2)
7.4 Ramp Type Analog-to-Digital Converter
162(3)
7.5 Successive Approximation Type Analog-to-Digital Converter
165(4)
7.6 Weighted Sum Type Digital-to-Analog Converter
169(1)
7.7 Ladder Type Digital-to-Analog Converter
170(5)
8 Front-End Electronics for Embedded Systems
175(26)
8.1 Electromechanical, Device Control
175(3)
8.2 Pulse Width Modulation Circuits
178(3)
8.3 DC Motor Control
181(1)
8.4 Servo Control
181(1)
8.5 Hall-Effect Sensor Control
182(1)
8.6 Design Project 1: Designing Front-End Electronics for an Analog Microphone
183(2)
8.7 Design Project 2: Designing Front-End Electronics for a Temperature Measurement System
185(4)
8.8 Project 3: Designing Front-End Electronics for a Light Level Measurement System
189(2)
8.9 Project 4: Designing Photo Detector Circuits
191(3)
8.10 Project 5: Designing Front-End Electronics for an Optoelectronic Tachometer
194(2)
8.11 Project 6: Designing Front-End Electronics for a Hall-Effect-Based Tachometer
196(5)
9 Review of Combinational and Sequential Logic Circuits and Design
201(94)
9.1 Logic Gates
202(6)
9.2 Boolean Algebra
208(3)
9.3 Designing Combinational Circuits Using Truth Tables
211(3)
9.4 Combinational Logic Minimization-Karnaugh Maps
214(6)
9.5 Basic Logic Blocks
220(9)
9.6 Adders
229(11)
9.7 Subtracters
240(1)
9.8 Shifters
241(3)
9.9 Multipliers
244(3)
9.10 D Latch
247(2)
9.11 Timing Methodology Using D Latches
249(1)
9.12 D Flip-Flop
250(2)
9.13 Timing Methodology Using D Flip-Flops
252(2)
9.14 Timing Violations
254(5)
9.15 Register
259(2)
9.16 Shift Register
261(1)
9.17 Counter
262(1)
9.18 Moore-Type State Machine
263(5)
9.19 Mealy-Type State Machine
268(4)
9.20 Controller Design: Moore-Type State Machine Versus Counter-Decoder Scheme
272(4)
9.21 A Simple Memory Block
276(3)
9.22 A Design Example
279(16)
Index 295
Ahmet Bindal received his M.S. and Ph.D. degrees in Electrical Engineering from the University of California, Los Angeles CA. His doctoral research was on the material characterization for high electron mobility GaAs transistors. During his graduate program, he was a graduate research associate and technical consultant for Hughes Aircraft Co. In 1988, he joined the technical staff of IBM Research and Development Center in Fishkill, NY, where he worked as a device design and characterization engineer. He developed asymmetrical MOS transistors and ultra thin Silicon-On-Insulator (SOI) technologies for IBM. In 1993, he transferred to IBM in Rochester, MN, as a senior circuit design engineer to work on the floating-point unit for AS-400 main frame processor. He continued his circuit design career at Intel Corporation in Santa Clara, CA, where he designed 16-bit packed multipliers and adders for the MMX unit for Pentium II processors. In 1996, he joined Philips Semiconductors in Sunnyvale,CA, where he was involved in the designs of instruction/data caches and various SRAM modules for the Trimedia processor. His involvement with VLSI architecture started in Philips Semiconductors and led to the design of the Video-Out unit for the same processor. In 1998, he joined Cadence Design Systems as a VLSI architect and directed a team of engineers to design self-timed asynchronous processors. Starting in 2000, he implemented 802.11a and 802.11b wireless LAN protocols in VLSI. After approximately 20 years of industry work, he joined the Computer Engineering faculty at San Jose State University in 2002. His current research interests range from Nano-Scale Electron Devices to VLSI Design and Robotics. Dr. Bindal has contributed to over 30 scientific journal and conference publications and 10 invention disclosures with IBM.  He currently holds 3 U.S. patents with IBM and 1 with Intel Corporation.