Atjaunināt sīkdatņu piekrišanu

E-grāmata: Electronics for Radiation Detection

Edited by (Emerging Technologies CMOS Inc., British Columbia, Canada)
  • Formāts - PDF+DRM
  • Cena: 142,76 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

There is a growing need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Assessing the billion-dollar market for detection equipment in the context of medical imaging using ionizing radiation, Electronics for Radiation Detection presents valuable information that will help integrated circuit (IC) designers and other electronics professionals take full advantage of the tremendous developments and opportunities associated with this burgeoning field.

Assembling contributions from industrial and academic experts, this book













Addresses the state of the art in the design of semiconductor detectors, integrated circuits, and other electronics used in radiation detection







Analyzes the main effects of radiation in semiconductor devices and circuits, paying special attention to degradation observed in MOS devices and circuits when they are irradiated







Explains how circuits are built to deal with radiation, focusing on practical information about how they are being used, rather than mathematical details









Radiation detection is critical in space applications, nuclear physics, semiconductor processing, and medical imaging, as well as security, drug development, and modern silicon processing techniques. The authors discuss new opportunities in these fields and address emerging detector technologies, circuit design techniques, new materials, and innovative system approaches.

Aimed at postgraduate researchers and practicing engineers, this book is a must for those serious about improving their understanding of electronics used in radiation detection. The information presented here can help you make optimal use of electronic detection equipment and stimulate further interest in its development, use, and benefits.
Preface vii
About the Editor ix
Contributors xi
Chapter 1 The Future of Medical Imaging: Understanding Our True Limitations
1(20)
Mark Nadeski
Gene Frantz
1.1 Introduction
1(1)
1.2 Where Are We Going?
2(2)
1.2.1 The EyeCam
2(2)
1.3 Making Health Care More Personal
4(5)
1.3.1 Advances in Digital and Medical Imaging
4(2)
1.3.2 How Telecommunications Complements Medical Imaging
6(2)
1.3.3 Automated Monitoring
8(1)
1.4 The Future of Technology
9(10)
1.4.1 Remembering Our Focus
10(1)
1.4.2 What We Can Expect from Technology
10(1)
1.4.3 Development Cost
11(1)
1.4.4 Performance
12(1)
1.4.5 Multiprocessor Complexity
13(1)
1.4.5.1 Multiprocessing Elements
13(2)
1.4.6 Power Dissipation
15(1)
1.4.6.1 Lower Power into the Future
15(2)
1.4.6.2 Perpetual Devices
17(1)
1.4.7 Intergration through SoC and SiP
17(2)
1.5 Defining the Future
19(1)
References
20(1)
Chapter 2 Detector Front-End Systems in X-Ray CT: From Current-Mode Readout to Photon Counting
21(30)
Roger Steadman
Christian Baumer
2.1 Computed Tomography
21(2)
2.2 CT Detectors Today
23(2)
2.3 CMOS Integration
25(16)
2.3.1 CMOS Photodiode
25(3)
2.3.2 Current Amplifier
28(4)
2.3.3 Monolithic Integration of CMOS Photodiode and Readout Electronics
32(7)
2.3.4 Realization of an In-Pixel Sigma-Delta Modulator
39(2)
2.4 Counting-Mode CT Detectors
41(6)
2.5 Conclusion
47(1)
Acknowledgments
47(1)
References
48(3)
Chapter 3 Photon-Counting Energy-Dispersive Detector Arrays for X-Ray Imaging
51(38)
Jan S. Iwanczyk
W.C. Barber
Einar Nygard
Nai Malakhov
N.E. Hartsough
J.C. Wessel
3.1 Introduction
51(2)
3.2 Conventional X-ray Computed Tomography Detectors
53(2)
3.3 Lower Dose in CT with Photon-Counting Detectors
55(1)
3.4 Energy Information in CT with Photon-Counting Detectors
56(2)
3.5 Photon-Counting X-ray Detectors in Medical Imaging
58(1)
3.6 Direct-Conversion X-ray Detectors
59(2)
3.7 Cadmium Telluride and Cadmium Zinc Telluride Detectors
61(1)
3.8 Photon-Counting Cadmium Telluride Detector Design and Fabrication for CT
62(2)
3.9 Photon-Counting CdTe Detector Characteristics
64(4)
3.9.1 CdTe Detector Dark-Current Measurements
65(1)
3.9.2 Fast Photon Counting with CdTe and Discrete Electronics
66(2)
3.10 Photon-Counting ASIC Architecture for CT
68(4)
3.11 Photon-Counting CT Module Characteristics
72(1)
3.12 Prototype Clinical Photon-Counting CT System
72(4)
3.13 Future Work: Detector Arrays with Parallel Drift Structures
76(4)
3.14 X-ray Photon Counting with Silicon Photomultipliers
80(2)
3.14.1 Fast Scintillators for Use with Silicon Photomultipliers (SiPMs)
81(1)
3.14.2 Experimental Results with Silicon Photomultipliers (SiPMs)
82(1)
3.15 Summary
82(2)
Acknowledgments
84(1)
References
85(4)
Chapter 4 Planar and PET Systems for Drug Development
89(28)
Ryoko Yamada
Hirashi Uchida
4.1 Introduction
90(1)
4.2 PPIS
91(12)
4.1.2 Introduction
91(1)
4.2.2 System Construction and Data Processing
92(1)
4.2.2.1 Detector Module
92(1)
4.2.2.2 Detector Head
93(2)
4.2.2.3 Electronics
95(1)
4.2.2.4 Data Processing and Image Reconstruction
95(1)
4.2.3 System Performance
96(1)
4.2.3.1 Spatial Resolution
96(2)
4.2.3.2 Sensitivity and Uniformity
98(1)
4.2.3.3 Count-Rate Performance
99(1)
4.2.4 Planar Imaging Applicability
99(3)
4.2.5 Conclusion
102(1)
4.3 Small-Animal PET Scanner
103(11)
4.3.1 Introduction
103(1)
4.3.2 System Construction and Data Processing
103(1)
4.3.2.1 Detector Module
103(2)
4.3.2.2 Detector Ring Structure and Gantry
105(1)
4.3.2.3 Electronics
106(2)
4.3.2.4 Data Processing and Image Reconstruction
108(1)
4.3.3 Performance Evaluation
108(1)
4.3.3.1 Detector-Pair Resolution
108(1)
4.3.3.2 Spatial Resolution of the System
109(1)
4.3.3.3 Sensitivity
110(1)
4.3.3.4 Scatter Fraction and Noise-Equivalent Count Rate
110(1)
4.3.3.5 In Vivo Imaging Studies of Animals
111(1)
4.3.4 Discussion
111(3)
4.4 Summary
114(1)
References
114(3)
Chapter 5 PET Front-End Electronics
117(34)
Christoph Werner Lerche
Vicente Herrero Bosch
5.1 Introduction
117(1)
5.2 Preamplifying Stage
118(18)
5.2.1 Equivalent Models of Detectors
118(1)
5.2.1.1 Photomultiplier Tube Detector Equivalent Circuit
119(2)
5.2.1.2 Silicon Photomultiplier Detector Equivalent Circuit
121(1)
5.2.1.3 Direct Detector Equivalent Circuit
122(2)
5.2.2 Effect of Signal Characteristics on Preamplifier Selection
124(1)
5.2.2.1 Event-Oriented Preamplifiers
124(3)
5.2.2.2 Integrating Amplifiers
127(2)
5.2.3 Noise Analysis
129(1)
5.2.3.1 Equivalent-Noise Charge Calculation
130(6)
5.3 Introduction to Charge-Division Circuits
136(1)
5.4 Implementation of Charge-Division Circuits
136(7)
5.5 Systematic and Statistical Errors
143(3)
References
146(5)
Chapter 6 Design Considerations for Positron Emission Tomography (PET) Scanners Dedicated to Small-Animal Imaging
151(28)
Rejean Fontaine
6.1 Introduction
151(1)
6.2 Physics of PET Scanners
152(5)
6.3 Trade-offs in Scanner Designs
157(4)
6.4 Typical Electronics Chain for PET
161(13)
6.4.1 The Crystal
163(2)
6.4.2 Common Detectors in PET
165(1)
6.4.2.1 The Photomultiplier Tube and Its Amplification Stage
165(2)
6.4.2.2 Avalanche Photodiode-Based Detectors and Their Amplification Stage
167(1)
6.4.2.3 Noise Issues for APD-Based Detectors
167(4)
6.4.2.4 Silicon Photomultipliers (SiPMs)
171(1)
6.4.2.5 Baseline Restoration and Holding
172(1)
6.4.2.6 Energy and Timing Measurement
173(1)
6.5 Multimodality
174(1)
6.6 Conclusion
174(1)
References
175(4)
Chapter 7 Geiger-Mode Avalanche Photodiodes for PET/MRI
179(22)
Jae Sung Lee
Seong Jong Hong
7.1 Motivation
180(1)
7.2 Introduction to PET/MRI
181(3)
7.2.1 PET and PET/CT
181(1)
7.2.1.1 PET
181(1)
7.2.1.2 PET/CT
182(1)
7.2.2 MRI
182(1)
7.2.3 PET/MRI
183(1)
7.3 Other Photodetectors Used in PET/MRI Units
184(6)
7.3.1 The Photomultiplier Tube
184(1)
7.3.1.1 Structure and Principles
184(1)
7.3.1.2 Integration of Separate Scanners
184(2)
7.3.1.3 Approaches Using Optical Fibers
186(1)
7.3.2 Avalanche Photodiode
187(1)
7.3.2.1 Structure and Principles
187(1)
7.3.2.2 Array-Type APDs
188(1)
7.3.2.3 Position-Sensitive APDs
189(1)
7.4 Geiger-Mode APD
190(2)
7.4.1 Structure and Principles
190(1)
7.4.2 Basic Characteristics of G-APDs
190(1)
7.4.2.1 Bias Voltage and Gain
191(1)
7.4.2.2 Energy and Timing Resolutions
192(1)
7.4.3 MR Compatibility
192(1)
7.5 MR-Compatible G-APD PET Detectors
192(5)
7.5.1 Approaches Used at Seoul National University
192(2)
7.5.2 TOF PET/MRI
194(2)
7.5.3 DOI PET/MRI
196(1)
7.6 Conclusion
197(1)
References
198(3)
Chapter 8 Current-Mode Front-End Electronics for Silicon Photomultipliers
201(20)
Francesco Corsi
Cristoforo Marzocca
Maurizio Foresta
8.1 From APD to SiPM
201(4)
8.2 The Model
205(5)
8.3 Current-Mode Front-End Approach
210(7)
8.4 Example of Multichannel Architecture
217(2)
8.5 Summary
219(1)
References
219(2)
Chapter 9 Integrated Charge-Measuring Systems for Radiation Detectors in CMOS Technologies
221(28)
Angelo Rivetti
9.1 Introduction
221(2)
9.2 Specifying a Charge-Measuring Integrated Circuit
223(6)
9.2.1 Sensor Capacitance
224(1)
9.2.2 Sensor Dark Current
225(2)
9.2.3 Noise
227(1)
9.2.4 Dynamic Range and Linearity
227(1)
9.2.5 Event Rate and Efficiency
228(1)
9.2.6 Power Consumption
229(1)
9.3 Architectures for Integrated Charge-Measuring Systems
229(13)
9.3.1 Full-Flash Architectures
229(4)
9.3.2 Architectures Based on Analog Memories
233(7)
9.3.3 Peak Detectors and Hold
240(2)
9.3.4 Full-Flash versus Analog Derandomization: Some Remarks
242(1)
9.4 Practical Design Aspects in Integrated Front-End Systems
242(5)
9.4.1 Minimizing Digital Noise
242(4)
9.4.2 Common Mode Noise
246(1)
References
247(2)
Chapter 10 Current-and Charge-Sensitive Signal Conditioning for Position Determination
249(36)
Sven Peter Bonisch
10.1 Introduction
250(1)
10.2 Signal Conditioning
250(15)
10.2.1 Preamplifier
252(1)
10.2.1.1 Charge-Sensitive Amplifier
252(1)
10.2.1.2 Current-Sensitive Amplifier
253(1)
10.2.1.3 Comparison of CSA and ISA
254(2)
10.2.1.4 Real Preamplifier
256(3)
10.2.2 Pulse Shaping
259(1)
10.2.2.1 Gaussian Delay-Time Approximation
259(3)
10.2.2.2 Building Blocks
262(1)
10.2.3 Example
263(2)
10.3 Design Specifications
265(7)
10.3.1 Conversion Gain
265(1)
10.3.2 Dynamic Range
265(1)
10.3.3 Linearity
266(1)
10.3.3.1 Signal Linearity
266(1)
10.3.3.2 Position Linearity
267(2)
10.3.4 Equivalent Noise Charge
269(1)
10.3.5 Signal-to-Noise Ratio
270(1)
10.3.6 Position Resolution
270(1)
10.3.7 Shaping Time
271(1)
10.4 Noise
272(10)
10.4.1 Operational Amplifier Noise Modeling
272(2)
10.4.2 Noise Gain
274(3)
10.4.3 Noise Correlation
277(2)
10.4.4 Optimization
279(3)
10.5 Conclusions
282(1)
Acknowledgments
283(1)
References
283(2)
Chapter 11 Analog-to-Digital Converters for Radiation Detection Electronics
285(30)
Rafal Dlugosz
Krzysztof Iniewski
11.1 Introduction
285(2)
11.2 General Classification of ADCs
287(3)
11.3 SAR Principle of Operation
290(2)
11.4 SAR Versus Flash ADC
292(1)
11.5 State of the Art in SAR ADC Design
293(5)
11.5.1 Optimization of the Capacitor Array
295(1)
11.5.2 Optimization of the Comparator
296(2)
11.6 Design Example of 8-bit Current-Mode SAR
298(4)
11.7 Optimization Techniques in Current-Mode SAR ADCs
302(1)
11.8 Interleaved SAR Operation
303(4)
11.9 Current-Mode Interleaved SAR ADC
307(1)
11.10 Conclusions
308(1)
References
309(6)
Chapter 12 Low-Power Intergrated Front-End for Timing Applications with Semiconductor Radiation Detectors
315(22)
Sorin Martoiu
Angelo Rivetti
12.1 Introduction
315(2)
12.2 Time Resolution
317(4)
12.2.1 Timing Errors due to Noise
317(1)
12.2.2 Timing Errors due to Amplitude Variations
318(3)
12.3 Constant-Fraction Discriminator
321(7)
12.3.1 Principle of Operation
321(2)
12.3.2 Issues in Monolithic CFD Design
323(1)
12.3.3 Practical CFD Implementations
324(4)
12.4 Time-Walk Correction with Amplitude Information
328(6)
12.4.1 Time-Over-Threshold: Basic Principle and Practical Implementations
328(2)
12.4.2 Time Resolution of a Low-Power ToT Cell in 0.13-μm CMOS: A Case Study
330(4)
References
334(3)
Chapter 13 Time-to-Digital Converter Circuits in Radiation Detection Systems
337(24)
Sachin Junnarkar
13.1 Introduction
337(2)
13.2 TDC Applications
339(3)
13.2.1 Positron Emission Tomography
339(1)
13.2.2 Associated Particle Technique, Time-of-Flight Experiments
340(2)
13.2.3 MARIACHI Experiment
342(1)
13.3 TDC Characteristics
342(1)
13.4 Process, Voltage, and Temperature Variations
343(3)
13.4.1 Temperature Variations
343(1)
13.4.2 Voltage Variations
344(2)
13.5 Noise Analysis
346(1)
13.6 Meta-Stability in Digital Logic
347(1)
13.7 TDC State of the Art
348(7)
13.7.1 FPGAs and CMOS-ASIC-Based TDCs
348(2)
13.7.2 Circuit Topologies
350(1)
13.7.2.1 Tapped-Delay-Line Method
350(1)
13.7.2.2 Vernier Technique
351(1)
13.7.2.3 Cyclic TDC
352(1)
13.7.2.4 Two-Ring Oscillator-Based Technique
353(2)
13.8 Conclusion
355(3)
Acknowledgments
358(1)
References
358(3)
Index 361
Dr. Krzysztof (Kris) Iniewski manages R&D at Redlen Technologies, Inc., a startup company in British Columbia, Canada. He is also an executive director of CMOS Emerging Technologies, Inc. (www.cmoset.com). His research interests are in hardware design for biomedical and networking applications. From 2004 to 2006, he was an associate professor at the Electrical Engineering and Computer Engineering Department of University of Alberta, where he conducted research on low power wireless circuits and systems. During his tenure in Edmonton, he put together a book for CRC Press titled Wireless Technologies: Circuits, Systems and Devices. From 1995 to 2003, he was with PMC-Sierra and held various technical and management positions. During that time, he led development of number of VLSI chips used in optical networks. Prior to joining PMC-Sierra, from 1990 to 1994, he was an assistant professor at the University of Torontos Department of Electrical Engineering and Computer Engineering. Dr. Iniewski has published more than 100 research papers in international journals and conferences. He holds 18 international patents granted in the USA, Canada, France, Germany, and Japan. He received his Ph.D in electronics (honors) from the Warsaw University of Technology, Poland in 1988.