Preface |
|
vii | |
|
|
1 | (28) |
|
1.1 Simple Harmonic Oscillator |
|
|
1 | (4) |
|
1.2 Damped Harmonic Oscillator |
|
|
5 | (6) |
|
|
6 | (1) |
|
1.2.2 Critically damped case |
|
|
7 | (1) |
|
|
7 | (3) |
|
|
10 | (1) |
|
1.2.5 Antidamped oscillations |
|
|
10 | (1) |
|
1.2.6 Critical antidamping |
|
|
10 | (1) |
|
1.2.7 Extreme antidamping |
|
|
11 | (1) |
|
1.3 Periodically Forced Harmonic Oscillator |
|
|
11 | (4) |
|
|
12 | (2) |
|
|
14 | (1) |
|
1.4 Two Coupled Harmonic Oscillators |
|
|
15 | (5) |
|
|
17 | (2) |
|
|
19 | (1) |
|
|
20 | (1) |
|
1.5 Harmonic Oscillator Chains |
|
|
20 | (5) |
|
1.5.1 Three coupled oscillators |
|
|
21 | (1) |
|
1.5.2 Long chain of oscillators |
|
|
22 | (2) |
|
1.5.3 Ring of oscillators |
|
|
24 | (1) |
|
1.6 Primer on Linear Algebra |
|
|
25 | (4) |
|
1.6.1 Calculation of eigenvalues and eigenvectors |
|
|
25 | (1) |
|
|
26 | (3) |
|
|
29 | (42) |
|
|
29 | (4) |
|
|
33 | (1) |
|
2.3 Periodically Forced Pendulum |
|
|
34 | (10) |
|
|
35 | (2) |
|
|
37 | (3) |
|
|
40 | (2) |
|
2.3.4 Kaplan--Yorke dimension |
|
|
42 | (2) |
|
|
44 | (7) |
|
|
45 | (1) |
|
|
46 | (2) |
|
|
48 | (1) |
|
|
49 | (2) |
|
2.5 Forced Square-Well Oscillator |
|
|
51 | (3) |
|
|
52 | (1) |
|
|
52 | (2) |
|
2.6 Asymmetric-Well Oscillator |
|
|
54 | (1) |
|
2.7 Nonlinearly Damped Harmonic Oscillator |
|
|
55 | (2) |
|
2.8 Van der Pol Oscillator |
|
|
57 | (1) |
|
|
57 | (1) |
|
2.8.2 Periodically forced case |
|
|
58 | (1) |
|
2.9 Periodically Damped Oscillator |
|
|
58 | (6) |
|
|
60 | (2) |
|
2.9.2 Periodically forced case |
|
|
62 | (2) |
|
|
64 | (1) |
|
2.11 Rayleigh--Duffing Two-Well Oscillator |
|
|
64 | (2) |
|
|
65 | (1) |
|
2.11.2 Periodically forced case |
|
|
66 | (1) |
|
2.12 Parametrically Forced Pendulum |
|
|
66 | (2) |
|
2.13 Non-Deterministic Harmonic Oscillator |
|
|
68 | (3) |
|
|
71 | (22) |
|
3.1 Coupled Quartic Oscillators |
|
|
71 | (5) |
|
|
71 | (3) |
|
|
74 | (2) |
|
|
76 | (3) |
|
|
77 | (1) |
|
|
78 | (1) |
|
3.3 Master-Slave Oscillators |
|
|
79 | (5) |
|
|
79 | (1) |
|
|
80 | (3) |
|
|
83 | (1) |
|
3.4 Coupled van der Pol Oscillators |
|
|
84 | (3) |
|
|
84 | (2) |
|
|
86 | (1) |
|
|
86 | (1) |
|
3.4.4 Parametrically coupled case |
|
|
87 | (1) |
|
3.5 Ball on an Oscillating Floor |
|
|
87 | (2) |
|
3.6 Nonlinearly Coupled Harmonic Oscillators |
|
|
89 | (1) |
|
3.7 Lotka--Volterra Systems |
|
|
90 | (3) |
|
4 Thermostatted Oscillators |
|
|
93 | (38) |
|
4.1 Nose--Hoover Oscillator |
|
|
93 | (11) |
|
4.1.1 Conservative Nose--Hoover oscillator |
|
|
94 | (6) |
|
4.1.2 Dissipative Nose--Hoover oscillator |
|
|
100 | (2) |
|
4.1.3 Nose--Hoover with an unstable thermostat |
|
|
102 | (2) |
|
4.2 Cubic Thermostat Oscillator |
|
|
104 | (2) |
|
4.3 Chain Thermostat Oscillators |
|
|
106 | (4) |
|
4.3.1 Martyna--Klein--Tuckerman oscillator |
|
|
106 | (2) |
|
4.3.2 Hoover--Holian oscillator |
|
|
108 | (1) |
|
4.3.3 Ju--Bulgac oscillator |
|
|
109 | (1) |
|
|
110 | (4) |
|
4.5 Logistic Thermostat Oscillator |
|
|
114 | (1) |
|
4.6 Signum Thermostatted Linear Oscillator |
|
|
115 | (5) |
|
4.7 Signum Thermostatted Nonlinear Oscillators |
|
|
120 | (7) |
|
4.7.1 Ergodic cubic oscillator |
|
|
120 | (1) |
|
4.7.2 Ergodic Duffing oscillator |
|
|
121 | (1) |
|
|
122 | (2) |
|
4.7.4 Square-well oscillator |
|
|
124 | (3) |
|
4.8 Dissipative Signum Thermostat |
|
|
127 | (4) |
|
5 Two-Dimensional Oscillators |
|
|
131 | (28) |
|
|
131 | (5) |
|
5.1.1 Isotropic oscillator |
|
|
131 | (2) |
|
5.1.2 Anisotropic oscillator |
|
|
133 | (2) |
|
5.1.3 Periodically forced oscillator |
|
|
135 | (1) |
|
5.2 Nonlinear Oscillators |
|
|
136 | (11) |
|
|
136 | (3) |
|
5.2.2 Mexican hat potential |
|
|
139 | (1) |
|
|
140 | (3) |
|
|
143 | (1) |
|
5.2.5 Henon--Heiles system |
|
|
144 | (1) |
|
5.2.6 Particle in periodic potential |
|
|
145 | (2) |
|
5.3 Thermostatted Oscillators |
|
|
147 | (4) |
|
5.3.1 Two-dimensional Nose--Hoover oscillator |
|
|
148 | (1) |
|
5.3.2 Two-dimensional nonlinear oscillator |
|
|
149 | (1) |
|
5.3.3 Two-dimensional signum thermostat oscillator |
|
|
149 | (2) |
|
|
151 | (8) |
|
|
152 | (1) |
|
|
153 | (2) |
|
|
155 | (1) |
|
|
155 | (2) |
|
|
157 | (2) |
|
6 Map and Walk Analogs of Flows |
|
|
159 | (22) |
|
6.1 Maps as Analogs of Flows |
|
|
159 | (1) |
|
6.2 Chaos and Ergodicity in One Dimension |
|
|
160 | (3) |
|
6.3 Time-Reversible Conservative Maps |
|
|
163 | (4) |
|
6.4 Time-Reversible Nonequilibrium Maps |
|
|
167 | (1) |
|
6.5 Fractal Information Dimensions |
|
|
168 | (5) |
|
6.6 Mesh Dependence of Information Dimension |
|
|
173 | (4) |
|
6.7 Random Walk Equivalents of Maps |
|
|
177 | (1) |
|
6.8 Further Fractal Time-Reversible Maps |
|
|
178 | (3) |
|
7 From Small Systems to Large |
|
|
181 | (24) |
|
7.1 Bridging the Gap between Small and Large Systems |
|
|
181 | (2) |
|
7.2 Equilibrium Systems with Different Scales |
|
|
183 | (1) |
|
7.3 Collisionless Knudsen Gas Boundary Conditions |
|
|
184 | (3) |
|
7.4 Hamilton's Equations; Coordinates and Momenta |
|
|
187 | (1) |
|
7.5 Feedback Control of Atomistic Simulations |
|
|
187 | (1) |
|
7.6 The Nose and Nose--Hoover Oscillators |
|
|
188 | (2) |
|
7.7 Hamilton's Motion Equations; Kinetic Temperature |
|
|
190 | (1) |
|
7.8 Many-Body Simulations - Repulsive Pairwise Forces |
|
|
191 | (2) |
|
7.9 A Smooth Finite-Range Soft-Disk Potential |
|
|
193 | (1) |
|
7.10 Energy and Pressure for Isothermal Soft Disks |
|
|
194 | (1) |
|
7.11 Representations of Equation of State Data |
|
|
195 | (4) |
|
7.12 Lindemann Criterion for Melting |
|
|
199 | (2) |
|
7.13 Centered Second Difference Newtonian Integration |
|
|
201 | (1) |
|
7.14 Fourth-Order Classic Runge--Kutta Integration |
|
|
202 | (3) |
|
8 Thermodynamics and Molecular Dynamics |
|
|
205 | (26) |
|
8.1 Macroscopic Thermodynamics: Heat, Work, Energy |
|
|
205 | (1) |
|
8.2 A State Function Associated with Heat, Entropy |
|
|
206 | (1) |
|
8.3 Thermodynamic Entropy from Carnot's 1824 Cycle |
|
|
207 | (4) |
|
8.4 Kinetic Theory and the Boltzmann Equation |
|
|
211 | (1) |
|
8.5 Van der Waals' 1873 Model for Liquids and Gases |
|
|
212 | (1) |
|
8.6 Sub-Spinodal Evolution with Lennard-Jones' Potential |
|
|
213 | (1) |
|
8.7 Boltzmann and Gibbs' Statistical Mechanics |
|
|
214 | (2) |
|
8.8 Liouville's Theorem and Gibbs' Ensembles |
|
|
216 | (1) |
|
8.9 Entropy in Statistical Mechanics |
|
|
217 | (1) |
|
8.10 Entropies from Phase Space Microstates |
|
|
218 | (2) |
|
8.11 From the Microcanonical to the Canonical Ensemble |
|
|
220 | (2) |
|
8.12 Nose-Hoover and Hoover--Holian Moments |
|
|
222 | (2) |
|
8.13 From the Virial Theorem to the Pressure Tensor |
|
|
224 | (1) |
|
8.14 Gravitational Equilibria with Molecular Dynamics |
|
|
225 | (2) |
|
8.15 Isoenergetic Applications of Thermodynamics |
|
|
227 | (3) |
|
8.16 An Application of the Second Law of Thermodynamics |
|
|
230 | (1) |
|
9 Mechanics of Nonequilibrium Fluids |
|
|
231 | (18) |
|
9.1 Nonequilibrium Systems |
|
|
231 | (2) |
|
9.2 The Continuum View of Nonequilibrium Flows |
|
|
233 | (1) |
|
9.3 The Navier--Stokes Equations |
|
|
234 | (3) |
|
9.4 Steady-State Shear Viscosity for Soft Disks |
|
|
237 | (1) |
|
9.5 Shear Viscosity Simulations using Doll's Tensor |
|
|
237 | (4) |
|
9.6 Heat Conduction with a One-Dimensional Model |
|
|
241 | (2) |
|
9.7 Alternative Thermostats |
|
|
243 | (1) |
|
9.8 Navier--Stokes Shock Wave Structure |
|
|
244 | (5) |
|
10 Micro and Macro Time-Reversibility |
|
|
249 | (28) |
|
10.1 Microscopic and Macroscopic Time-Reversibility |
|
|
249 | (1) |
|
10.2 Time-Reversible Centered Second Differences |
|
|
250 | (2) |
|
10.3 Loschmidt's and Zermelo's Paradoxes |
|
|
252 | (2) |
|
10.4 One-Dimensional Conducting Oscillator |
|
|
254 | (2) |
|
10.5 Conducting Doubly Thermostatted Oscillator |
|
|
256 | (2) |
|
10.6 Resolution of the Paradoxes |
|
|
258 | (1) |
|
10.7 Smooth-Particle Averaging for Field Variables |
|
|
259 | (1) |
|
10.8 Nonequilibrium Simulations |
|
|
260 | (3) |
|
10.9 Newtonian Simulations of Shock Wave Structure |
|
|
263 | (3) |
|
10.10 Tensorial Structure of the Steady Shock Wave |
|
|
266 | (2) |
|
10.11 Additional Points Along the Shock Hugoniot Curve |
|
|
268 | (2) |
|
10.12 One-Dimensional Planar Shock Waves are Stable |
|
|
270 | (1) |
|
10.13 Rarefaction from Reversed Irreversible Shock Waves |
|
|
271 | (3) |
|
10.14 Melting and Freezing for Hard Disks and Spheres |
|
|
274 | (3) |
|
11 Attractions in Molecular Dynamics |
|
|
277 | (16) |
|
11.1 Attractive Forces Produce Condensed Matter |
|
|
277 | (1) |
|
11.2 Alternatives to Lennard--Jones' Potential |
|
|
278 | (1) |
|
11.3 Initial Conditions for Liquid Phase Simulations |
|
|
279 | (4) |
|
11.4 Inelastic Two-Ball Collisions with Attractive Forces |
|
|
283 | (1) |
|
11.5 Irreversibility of the Reversed Two-Ball Problems |
|
|
284 | (1) |
|
11.6 The Reversal of Irreversible Processes |
|
|
285 | (2) |
|
11.7 Irreversibility, Restitution, and the One-Ball Problem |
|
|
287 | (1) |
|
11.8 Interesting Equilibria and Research Ideas |
|
|
288 | (1) |
|
11.9 Smooth-Particle Approach to Liquid Problems |
|
|
289 | (3) |
|
|
292 | (1) |
Bibliography |
|
293 | (10) |
Index |
|
303 | (6) |
About the Authors |
|
309 | |