Atjaunināt sīkdatņu piekrišanu

Elegant Simulations: From Simple Oscillators To Many-body Systems [Hardback]

(Ruby Valley Research Ins't, Nevada, Usa), (Univ Of California, Davis, Usa), (Univ Of Wisconsin-madison, Usa)
  • Formāts: Hardback, 324 pages
  • Izdošanas datums: 30-Jan-2023
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811263566
  • ISBN-13: 9789811263569
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 145,75 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 324 pages
  • Izdošanas datums: 30-Jan-2023
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • ISBN-10: 9811263566
  • ISBN-13: 9789811263569
Citas grāmatas par šo tēmu:
A recent development is the discovery that simple systems of equations can have chaotic solutions in which small changes in initial conditions have a large effect on the outcome, rendering the corresponding experiments effectively irreproducible and unpredictable. An earlier book in this sequence, Elegant Chaos: Algebraically Simple Chaotic Flows provided several hundred examples of such systems, nearly all of which are purely mathematical without any obvious connection with actual physical processes and with very limited discussion and analysis.In this book, we focus on a much smaller subset of such models, chosen because they simulate some common or important physical phenomenon, usually involving the motion of a limited number of point-like particles, and we discuss these models in much greater detail. As with the earlier book, the chosen models are the mathematically simplest formulations that exhibit the phenomena of interest, and thus they are what we consider 'elegant.'Elegant models, stripped of unnecessary detail while maximizing clarity, beauty, and simplicity, occupy common ground bordering both real-world modeling and aesthetic mathematical analyses. A computational search led one of us (JCS) to the same set of differential equations previously used by the other (WGH) to connect the classical dynamics of Newton and Hamilton to macroscopic thermodynamics. This joint book displays and explores dozens of such relatively simple models meeting the criteria of elegance, taste, and beauty in structure, style, and consequence.This book should be of interest to students and researchers who enjoy simulating and studying complex particle motions with unusual dynamical behaviors. The book assumes only an elementary knowledge of calculus. The systems are initial-value iterated maps and ordinary differential equations but they must be solved numerically. Thus for readers a formal differential equations course is not at all necessary, of little value and limited use.
Preface vii
1 Linear Oscillators
1(28)
1.1 Simple Harmonic Oscillator
1(4)
1.2 Damped Harmonic Oscillator
5(6)
1.2.1 Overdamped case
6(1)
1.2.2 Critically damped case
7(1)
1.2.3 Underdamped case
7(3)
1.2.4 Undamped case
10(1)
1.2.5 Antidamped oscillations
10(1)
1.2.6 Critical antidamping
10(1)
1.2.7 Extreme antidamping
11(1)
1.3 Periodically Forced Harmonic Oscillator
11(4)
1.3.1 Damped case
12(2)
1.3.2 Undamped case
14(1)
1.4 Two Coupled Harmonic Oscillators
15(5)
1.4.1 Moderate coupling
17(2)
1.4.2 Weak coupling
19(1)
1.4.3 Strong coupling
20(1)
1.5 Harmonic Oscillator Chains
20(5)
1.5.1 Three coupled oscillators
21(1)
1.5.2 Long chain of oscillators
22(2)
1.5.3 Ring of oscillators
24(1)
1.6 Primer on Linear Algebra
25(4)
1.6.1 Calculation of eigenvalues and eigenvectors
25(1)
1.6.2 Saddle points
26(3)
2 Nonlinear Oscillators
29(42)
2.1 Simple Pendulum
29(4)
2.2 Damped Pendulum
33(1)
2.3 Periodically Forced Pendulum
34(10)
2.3.1 Undamped case
35(2)
2.3.2 Lyapunov exponents
37(3)
2.3.3 Damped case
40(2)
2.3.4 Kaplan--Yorke dimension
42(2)
2.4 Duffing Oscillator
44(7)
2.4.1 Softening spring
45(1)
2.4.2 Hardening spring
46(2)
2.4.3 Quartic potential
48(1)
2.4.4 Two-well potential
49(2)
2.5 Forced Square-Well Oscillator
51(3)
2.5.1 Damped case
52(1)
2.5.2 Undamped case
52(2)
2.6 Asymmetric-Well Oscillator
54(1)
2.7 Nonlinearly Damped Harmonic Oscillator
55(2)
2.8 Van der Pol Oscillator
57(1)
2.8.1 Unforced case
57(1)
2.8.2 Periodically forced case
58(1)
2.9 Periodically Damped Oscillator
58(6)
2.9.1 Unforced case
60(2)
2.9.2 Periodically forced case
62(2)
2.10 Rayleigh Oscillator
64(1)
2.11 Rayleigh--Duffing Two-Well Oscillator
64(2)
2.11.1 Unforced case
65(1)
2.11.2 Periodically forced case
66(1)
2.12 Parametrically Forced Pendulum
66(2)
2.13 Non-Deterministic Harmonic Oscillator
68(3)
3 Coupled Oscillators
71(22)
3.1 Coupled Quartic Oscillators
71(5)
3.1.1 Undamped case
71(3)
3.1.2 Damped case
74(2)
3.2 Coupled Pendulums
76(3)
3.2.1 Undamped case
77(1)
3.2.2 Damped case
78(1)
3.3 Master-Slave Oscillators
79(5)
3.3.1 Undamped case
79(1)
3.3.2 Damped case
80(3)
3.3.3 Simplified case
83(1)
3.4 Coupled van der Pol Oscillators
84(3)
3.4.1 Symmetric case
84(2)
3.4.2 Simplified case
86(1)
3.4.3 Master-slave case
86(1)
3.4.4 Parametrically coupled case
87(1)
3.5 Ball on an Oscillating Floor
87(2)
3.6 Nonlinearly Coupled Harmonic Oscillators
89(1)
3.7 Lotka--Volterra Systems
90(3)
4 Thermostatted Oscillators
93(38)
4.1 Nose--Hoover Oscillator
93(11)
4.1.1 Conservative Nose--Hoover oscillator
94(6)
4.1.2 Dissipative Nose--Hoover oscillator
100(2)
4.1.3 Nose--Hoover with an unstable thermostat
102(2)
4.2 Cubic Thermostat Oscillator
104(2)
4.3 Chain Thermostat Oscillators
106(4)
4.3.1 Martyna--Klein--Tuckerman oscillator
106(2)
4.3.2 Hoover--Holian oscillator
108(1)
4.3.3 Ju--Bulgac oscillator
109(1)
4.4 Buncha Oscillator
110(4)
4.5 Logistic Thermostat Oscillator
114(1)
4.6 Signum Thermostatted Linear Oscillator
115(5)
4.7 Signum Thermostatted Nonlinear Oscillators
120(7)
4.7.1 Ergodic cubic oscillator
120(1)
4.7.2 Ergodic Duffing oscillator
121(1)
4.7.3 Ergodic pendulum
122(2)
4.7.4 Square-well oscillator
124(3)
4.8 Dissipative Signum Thermostat
127(4)
5 Two-Dimensional Oscillators
131(28)
5.1 Linear Oscillators
131(5)
5.1.1 Isotropic oscillator
131(2)
5.1.2 Anisotropic oscillator
133(2)
5.1.3 Periodically forced oscillator
135(1)
5.2 Nonlinear Oscillators
136(11)
5.2.1 Hardening springs
136(3)
5.2.2 Mexican hat potential
139(1)
5.2.3 Springy pendulum
140(3)
5.2.4 Diatomic molecule
143(1)
5.2.5 Henon--Heiles system
144(1)
5.2.6 Particle in periodic potential
145(2)
5.3 Thermostatted Oscillators
147(4)
5.3.1 Two-dimensional Nose--Hoover oscillator
148(1)
5.3.2 Two-dimensional nonlinear oscillator
149(1)
5.3.3 Two-dimensional signum thermostat oscillator
149(2)
5.4 Chaotic Scattering
151(8)
5.4.1 Bunimovich stadium
152(1)
5.4.2 Lorentz gas
153(2)
5.4.3 Particle in cell
155(1)
5.4.4 Galton board
155(2)
5.4.5 Fermi-Ulam model
157(2)
6 Map and Walk Analogs of Flows
159(22)
6.1 Maps as Analogs of Flows
159(1)
6.2 Chaos and Ergodicity in One Dimension
160(3)
6.3 Time-Reversible Conservative Maps
163(4)
6.4 Time-Reversible Nonequilibrium Maps
167(1)
6.5 Fractal Information Dimensions
168(5)
6.6 Mesh Dependence of Information Dimension
173(4)
6.7 Random Walk Equivalents of Maps
177(1)
6.8 Further Fractal Time-Reversible Maps
178(3)
7 From Small Systems to Large
181(24)
7.1 Bridging the Gap between Small and Large Systems
181(2)
7.2 Equilibrium Systems with Different Scales
183(1)
7.3 Collisionless Knudsen Gas Boundary Conditions
184(3)
7.4 Hamilton's Equations; Coordinates and Momenta
187(1)
7.5 Feedback Control of Atomistic Simulations
187(1)
7.6 The Nose and Nose--Hoover Oscillators
188(2)
7.7 Hamilton's Motion Equations; Kinetic Temperature
190(1)
7.8 Many-Body Simulations - Repulsive Pairwise Forces
191(2)
7.9 A Smooth Finite-Range Soft-Disk Potential
193(1)
7.10 Energy and Pressure for Isothermal Soft Disks
194(1)
7.11 Representations of Equation of State Data
195(4)
7.12 Lindemann Criterion for Melting
199(2)
7.13 Centered Second Difference Newtonian Integration
201(1)
7.14 Fourth-Order Classic Runge--Kutta Integration
202(3)
8 Thermodynamics and Molecular Dynamics
205(26)
8.1 Macroscopic Thermodynamics: Heat, Work, Energy
205(1)
8.2 A State Function Associated with Heat, Entropy
206(1)
8.3 Thermodynamic Entropy from Carnot's 1824 Cycle
207(4)
8.4 Kinetic Theory and the Boltzmann Equation
211(1)
8.5 Van der Waals' 1873 Model for Liquids and Gases
212(1)
8.6 Sub-Spinodal Evolution with Lennard-Jones' Potential
213(1)
8.7 Boltzmann and Gibbs' Statistical Mechanics
214(2)
8.8 Liouville's Theorem and Gibbs' Ensembles
216(1)
8.9 Entropy in Statistical Mechanics
217(1)
8.10 Entropies from Phase Space Microstates
218(2)
8.11 From the Microcanonical to the Canonical Ensemble
220(2)
8.12 Nose-Hoover and Hoover--Holian Moments
222(2)
8.13 From the Virial Theorem to the Pressure Tensor
224(1)
8.14 Gravitational Equilibria with Molecular Dynamics
225(2)
8.15 Isoenergetic Applications of Thermodynamics
227(3)
8.16 An Application of the Second Law of Thermodynamics
230(1)
9 Mechanics of Nonequilibrium Fluids
231(18)
9.1 Nonequilibrium Systems
231(2)
9.2 The Continuum View of Nonequilibrium Flows
233(1)
9.3 The Navier--Stokes Equations
234(3)
9.4 Steady-State Shear Viscosity for Soft Disks
237(1)
9.5 Shear Viscosity Simulations using Doll's Tensor
237(4)
9.6 Heat Conduction with a One-Dimensional Model
241(2)
9.7 Alternative Thermostats
243(1)
9.8 Navier--Stokes Shock Wave Structure
244(5)
10 Micro and Macro Time-Reversibility
249(28)
10.1 Microscopic and Macroscopic Time-Reversibility
249(1)
10.2 Time-Reversible Centered Second Differences
250(2)
10.3 Loschmidt's and Zermelo's Paradoxes
252(2)
10.4 One-Dimensional Conducting Oscillator
254(2)
10.5 Conducting Doubly Thermostatted Oscillator
256(2)
10.6 Resolution of the Paradoxes
258(1)
10.7 Smooth-Particle Averaging for Field Variables
259(1)
10.8 Nonequilibrium Simulations
260(3)
10.9 Newtonian Simulations of Shock Wave Structure
263(3)
10.10 Tensorial Structure of the Steady Shock Wave
266(2)
10.11 Additional Points Along the Shock Hugoniot Curve
268(2)
10.12 One-Dimensional Planar Shock Waves are Stable
270(1)
10.13 Rarefaction from Reversed Irreversible Shock Waves
271(3)
10.14 Melting and Freezing for Hard Disks and Spheres
274(3)
11 Attractions in Molecular Dynamics
277(16)
11.1 Attractive Forces Produce Condensed Matter
277(1)
11.2 Alternatives to Lennard--Jones' Potential
278(1)
11.3 Initial Conditions for Liquid Phase Simulations
279(4)
11.4 Inelastic Two-Ball Collisions with Attractive Forces
283(1)
11.5 Irreversibility of the Reversed Two-Ball Problems
284(1)
11.6 The Reversal of Irreversible Processes
285(2)
11.7 Irreversibility, Restitution, and the One-Ball Problem
287(1)
11.8 Interesting Equilibria and Research Ideas
288(1)
11.9 Smooth-Particle Approach to Liquid Problems
289(3)
11.10 Parting Comments
292(1)
Bibliography 293(10)
Index 303(6)
About the Authors 309