Atjaunināt sīkdatņu piekrišanu

Elon Lima - Selected Papers 2020 ed. [Hardback]

Edited by
  • Formāts: Hardback, 184 pages, height x width: 235x155 mm, 1 Illustrations, color; XIV, 184 p. 1 illus. in color., 1 Hardback
  • Izdošanas datums: 20-Nov-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030518175
  • ISBN-13: 9783030518172
  • Hardback
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 184 pages, height x width: 235x155 mm, 1 Illustrations, color; XIV, 184 p. 1 illus. in color., 1 Hardback
  • Izdošanas datums: 20-Nov-2020
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030518175
  • ISBN-13: 9783030518172

This book contains all research papers published by the distinguished Brazilian mathematician Elon Lima. It includes the papers from his PhD thesis on homotopy theory, which are hard to find elsewhere. Elon Lima wrote more than 40 books in the field of topology and dynamical systems. He was a profound mathematician with a genuine vocation to teach and write mathematics.


Comments on some mathematical contributions of Elon Lima.- The
Spanier-Whitehead duality in new homotopy categories.- Stable Postnikov
invariants and their duals.- Commuting vector fields on 2-manifolds.- On the
local triviality of the restriction map for embeddings.- Commuting vector
fields on S2.- Common singularities of commuting vector fields on
2-manifolds.- Commuting vector fields on S3.- Isometric immersions with
semi-definite second quadratic forms.- Immersions of manifolds with
non-negative sectional curvatures.- Orientability of smooth hypersurfaces and
the Jordan-Brouwer separation theorem.- The Jordan-Brouwer separation theorem
for smooth hypersurfaces.