Atjaunināt sīkdatņu piekrišanu

E-grāmata: Embedded Computer Systems: Architectures, Modeling, and Simulation: 22nd International Conference, SAMOS 2022, Samos, Greece, July 3-7, 2022, Proceedings

Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13511
  • Izdošanas datums: 13-Aug-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031150746
  • Formāts - EPUB+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13511
  • Izdošanas datums: 13-Aug-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031150746

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the proceedings of the 22st International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021, which took place in July 2022 in Samos, Greece.
The 21 full papers presented in this volume were carefully reviewed and selected from 44 submissions. The papers are organized in topics as follows: High level synthesis; memory systems; processor architecture; embedded software systems and beyond; deep learning optimization; extra-functional property estimation; innovative architectures and tools for security; european research projects on digital systems, services, and platforms.
High Level Synthesis.- High-Level Synthesis of Digital Circuits from
Template Haskell and SDF-AP 1 H. H. .- Implementing Synthetic Aperture Radar
Backprojection in Chisel A Field Report.-EasyHBM: Simple and Fast HBM
Access for FPGAs using High-Level Synthesis.- Memory Systems.- TREAM: A Tool
for Evaluating Error Resilience of Tree-based Models using Approximate
Memory.-SplitnCover: ISO 26262 Hardware Safety Analysis with SystemC.-
Tagged Geometric History Length Access Interval Prediction for Tightly
Coupled Memory Systems.- Processor Architecture.-NanoController: A Minimal
and Flexible Processor Architecture for UltraLow-Power.- ControlPULP: A
RISC-V Power Controller for HPC Processors with Parallel Control-Law
Computation Acceleration.- Embedded Software Systems and beyond.-CASA: An
Approach for exposing and documenting Concurrency-related Software
Properties.- High-Level Simulation of Embedded Software Vulnerabilities to EM
SideChannel Attacks.- Deep Learning Optimization I.-A Design Space
Exploration Methodology for Enabling Tensor Train Decomposition in Edge
Devices.- Study of DNN-based Ragweed Detection from Drones.- PULP-TrainLib:
Enabling On-Device Training for RISC-V Multi-Core MCUs through
Performance-Driven Autotuning.-Extra-functional Property Estimation.- The
Impact of Dynamic Storage Allocation on CPython Execution Time, Memory
Footprint and Energy Consumption: An Empirical Study.- Application runtime
estimation for AURIX embedded MCU using deep learning.-A Hybrid Performance
Prediction Approach for Fully-Connected Artificial Neural Networks on
Multi-Core Platforms.- Deep Learning Optimization I.- A Smart HW-Accelerator
for Non-Uniform Linear Interpolation of MLActivation
Functions.-Hardware-Aware Evolutionary Filter Pruning.- Innovative
Architectures and tools for Security.- Obfuscating the Hierarchy of a Digital
IP.-On the effectiveness of true random number generators implemented on
FPGAs.- Power and Energy.- SIDAM: A Design Space Exploration Framework for
Multi-Sensor Embedded Systems Powered by Energy Harvesting.- A Data-Driven
Approach to Lightweight DVFS-Aware Counter-Based Power Modeling for
Heterogeneous Platforms.