Atjaunināt sīkdatņu piekrišanu

E-grāmata: Emerging Nanotechnologies for Renewable Energy

Edited by (School of Mathematics and Physics, University of Lincoln, UK.), Edited by (Research Assistant, School of Mathematics and Physics, College of Science, University of Lincoln, UK), Edited by (School of Mathematics and Physics, University of Lincoln, UK)
  • Formāts: PDF+DRM
  • Sērija : Micro & Nano Technologies
  • Izdošanas datums: 16-Feb-2021
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128213575
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 223,53 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Micro & Nano Technologies
  • Izdošanas datums: 16-Feb-2021
  • Izdevniecība: Elsevier Science Publishing Co Inc
  • Valoda: eng
  • ISBN-13: 9780128213575
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Emerging Nanotechnologies for Renewable Energy offers a detailed overview of the benefits and applications of nanotechnology in the renewable energy sector. The book highlights recent work carried out on the emerging role of nanotechnology in renewable energy applications, ranging from photovoltaics, to battery technology and energy from waste. Written by international authors from both industry and academia, the book covers topics including scaling up from laboratory to industrial scale. It is a valuable resource for students at postgraduate and advanced undergraduate levels, researchers in industry and academia, technology leaders, and policy and decision-makers in the energy and engineering sectors.
  • Offers insights into a wide range of nanoscale technologies for the generation, storage and transfer of energy
  • Shows how nanotechnology is being used to create new, more environmentally friendly energy solutions
  • Assesses the challenges involved in scaling up nanotechnology-based energy solutions to an industrial scale
List of contributors
xi
I Nanotechnology for energy production
1 Third-generation solar cells
3(34)
Sadia Khalid
Muhammad Sultan
Ejaz Ahmed
Waqar Ahmed
1.1 Introduction
3(6)
1.1.1 Background
3(1)
1.1.2 Basics of solar cells
4(4)
1.1.3 Solar cell generations
8(1)
1.2 Demand for third-generation solar cells
9(1)
1.3 Third-generation solar cells
10(17)
1.3.1 Organic solar cells
11(3)
1.3.2 Dye-sensitized solar cells
14(4)
1.3.3 Quantum dot solar cells
18(3)
1.3.4 Perovskite solar cells
21(6)
1.4 Tandem architecture for improved efficiency
27(2)
1.5 Outlook and perspective
29(2)
References
31(6)
2 Nanomaterials for solar energy capture and steam generation
37(12)
Muhammad Amjad
Maje Alhaji Haruna
J. Gardy
2.1 Introduction
37(1)
2.2 Plasmonic nanomaterials
38(4)
2.3 Carbon-based nanomaterials
42(1)
2.4 Hybrid nanomaterials
43(3)
2.5 Challenges and prospects
46(1)
Conclusion
46(1)
References
47(2)
3 Nanocarbons for emerging photovoltaic applications
49(32)
Wei Zhang
Victoria Ferguson
S. Ravi P. Silva
3.1 Introduction: emerging photovoltaic solar cells
49(2)
3.2 Overview of nanocarbons: key characteristics for photovoltaic applications
51(4)
3.2.1 Structures
52(1)
3.2.2 Synthetic methods
53(1)
3.2.3 Properties
54(1)
3.3 Applications of nanocarbons in dye-sensitized solar cells
55(6)
3.3.1 Photoelectrodes
55(3)
3.3.2 Counter electrodes
58(1)
3.3.3 Electrolytes
59(1)
3.3.4 Dyes
60(1)
3.3.5 Transparent conducting electrodes
61(1)
3.4 Applications of nanocarbons in organic solar cells
61(4)
3.4.1 Electron---hole transport layers
61(3)
3.4.2 Transparent conducting electrodes
64(1)
3.5 Applications of nanocarbons in perovskite solar cells
65(8)
3.5.1 Electron---hole transport layers
65(5)
3.5.2 Active layers
70(1)
3.5.3 Counter electrodes
71(2)
3.5.4 Transparent conducting electrodes
73(1)
3.6 Conclusions and outlook
73(2)
References
75(6)
4 Nanocomposites for enhanced oil recovery
81(34)
Maje Alhaji Haruna
Muhammad Amjad
Saminu Musa Magami
4.1 Introduction
81(1)
4.2 Enhanced oil recovery
82(1)
4.3 Nanofluids for enhanced oil recovery
83(1)
4.4 Polymer nanocomposite for mobility control
84(19)
4.4.1 Effects of nanoparticles on polymer viscosity
85(6)
4.4.2 Polymer nanocomposites and surfactants for foam and emulsion stabilization
91(5)
4.4.3 Polymer nanocomposites for surface wettability alteration
96(1)
4.4.4 Structural disjoining pressure
97(1)
4.4.5 Transport of polymer nanocomposites in porous media
98(2)
4.4.6 Chemical stability of polymer nanocomposites
100(3)
4.5 Advantages of nanofluids in chemical enhanced oil recovery technology
103(2)
4.6 Disadvantages of nanofluids in chemical enhanced oil recovery technology
105(1)
4.7 Summary of the state of the art
105(1)
References
106(9)
5 Application of nanotechnology in hydrocarbon reservoir exploration and characterization
115(20)
Sunil Kumar
Jalal Foroozesh
5.1 Hydrocarbon reservoirs
115(1)
5.2 Nanotechnology in reservoir exploration and characterization
115(15)
5.2.1 Principles of nanorobots/nanosensors/nanoreporters for reservoir characterization
117(3)
5.2.2 Reservoir rock properties estimation
120(4)
5.2.3 Hydrocarbon detection
124(3)
5.2.4 Flood front monitoring
127(2)
5.2.5 Monitoring of H2S gas
129(1)
5.3 Recent progress in nanotechnology for reservoir characterization
130(2)
5.4 Future developments and challenges
132(1)
Conclusion
132(1)
Acknowledgment
132(1)
References
133(2)
6 Nanotechnology for drilling operations
135(14)
G. Goshtasp Cheraghian
Masoud Afrand
6.1 Introduction
135(2)
6.2 Physical---mechanical stability
137(4)
6.2.1 Wellbore stability
137(1)
6.2.2 Thermal stability
138(1)
6.2.3 Rheology and fluid loss stability
139(2)
6.3 Challenges
141(1)
6.4 Summary and future perspectives
142(2)
References
144(5)
7 Application of nanotechnology for biofuel production
149(24)
Hossein Esmaeili
Ehsan Nourafkan
Mehdi Nakisa
Waqar Ahmed
7.1 Introduction
149(2)
7.2 Nanomaterials and their characteristics
151(1)
7.3 Methods for biodiesel production
152(1)
7.4 Transesterification of oil into biodiesel in the presence of nanocatalysts
152(10)
7.4.1 Biodiesel production from vegetable oil using nanocatalysts
156(1)
7.4.2 Biodiesel production from waste oil using nanocatalysts
157(3)
7.4.3 Biodiesel production from animal fat using nanocatalysts
160(1)
7.4.4 Biodiesel production from microalgae oil using nanocatalysts
160(2)
7.5 Effect of nanocatalyst surface area on biodiesel production
162(1)
7.6 Reusability and recovery of nanocatalysts
163(1)
7.7 Nanocatalysts for bioethanol production
163(3)
7.8 Toxicity of nanoparticles
166(1)
Conclusions
167(1)
References
167(6)
8 Energy harvesting: role of hybrid nanofluids
173(40)
Tayyab Raza Shah
Hamza Babar
Hafiz Muhammad Ali
8.1 Introduction
173(2)
8.2 Preparation
175(5)
8.2.1 Forms of nanoparticles
175(2)
8.2.2 Single-step and two-step methods for hybrid nanofluid preparation
177(3)
8.3 Thermophysical properties and heat transfer characteristics
180(7)
8.4 Role of hybrid nanofluids in energy harvesting
187(14)
8.4.1 Direct energy-harvesting systems
187(6)
8.4.2 Indirect energy harvesting
193(8)
8.5 Operational challenges and system limitations
201(2)
8.5.1 Intricate physical science of colloidal nanoparticle suspensions
202(1)
Concluding remarks
203(1)
Nomenclature
204(1)
Greek letters
205(1)
Subscripts
205(1)
References
205(8)
9 Ultrafast lasers for energy generation
213(26)
Syed Asad Hussain
9.1 Introduction to lasers
213(4)
9.2 Physics of saturable absorbers
217(3)
9.3 Use of nanoparticles as saturable absorbers
220(5)
9.4 Ultrafast lasers with nanoparticles saturable absorbers
225(4)
9.4.1 Results in the visible wavelength region
226(1)
9.4.2 Results in the 1000 nm wavelength region
226(2)
9.4.3 Results in the 1500 nm wavelength region
228(1)
9.4.4 Results in the 2000 nm wavelength region
229(1)
9.5 Ultrashort lasers for energy generation
229(4)
9.5.1 Production of solar cells
232(1)
9.5.2 Lasers in space applications
232(1)
9.5.3 Lasers for basic research focused on energy
233(1)
Conclusion
233(1)
References
234(5)
10 Nanomaterials for advanced photovoltaic cells
239(20)
Neeraj Kumar
M. Kalyan Phani
Pankaj Chamoli
M.K. Manoj
Ashutosh Sharma
Waqar Ahmed
Ashok Kumar Srivastava
Sanjeev Kumar
10.1 Introduction
239(3)
10.1.1 Solar energy
240(1)
10.1.2 Photovoltaic solar cells
241(1)
10.2 Generations of photovoltaic cells
242(2)
10.2.1 First generation
242(1)
10.2.2 Second generation
242(1)
10.2.3 Third generation
243(1)
10.2.4 Fourth generation
243(1)
10.2.5 Brief overview of limitations and drawbacks
244(1)
10.3 Thin-film photovoltaic cells
244(2)
10.3.1 Copper-indium-gallium-selenide
244(1)
10.3.2 Cadmium telluride
244(1)
10.3.3 Amorphous silicon
245(1)
10.4 Organic solar cells
246(1)
10.5 Nanotechnology and solar energy conversion
247(2)
10.5.1 Nanostructured solar cells
247(1)
10.5.2 Application of nanostructures/nanoparticles in solar cells
248(1)
10.5.3 Nanoplasmonics for photovoltaics
249(1)
10.6 Factors affecting the properties of solar cells
249(1)
10.7 Graphene solar cells
250(3)
10.7.1 Synthesis methods of graphene
250(3)
10.8 Summary and future prospects
253(2)
References
255(4)
11 Characterization techniques in energy generation and storage
259(28)
N. Fleck
H. Amli
V. Dhanak
Waqar Ahmed
11.1 Introduction
259(1)
11.2 Characterization techniques
260(16)
11.2.1 X-ray photoelectron spectroscopy
260(4)
11.2.2 Raman spectroscopy
264(2)
11.2.3 X-ray diffraction
266(3)
11.2.4 Scanning electron microscopy
269(2)
11.2.5 Transmission electron microscopy
271(2)
11.2.6 Atomic force microscopy
273(2)
11.2.7 Battery cycling
275(1)
11.3 Other techniques
276(5)
11.3.1 Introduction
276(1)
11.3.2 UV-visible spectroscopy
277(1)
11.3.3 Profilometer
278(1)
11.3.4 Photoluminescence
278(1)
11.3.5 Infrared spectroscopy
279(1)
11.3.6 Mass spectrometry
279(1)
11.3.7 Capacitance---voltage measurements
279(1)
11.3.8 Current---voltage measurements
280(1)
11.3.9 Nuclear magnetic resonance
280(1)
11.4 Case study
281(2)
11.4.1 Graphite anode characterization for lithium-ion batteries
281(2)
Conclusions
283(1)
References
283(4)
12 Metal oxide semiconductors for photoelectrochemical water splitting
287(24)
N.R. Khalid
Ejaz Ahmed
M.B. Tahir
T. Iqbal
Sadia Khalid
Waqar Ahmed
12.1 Background to photoelectrochemical water splitting
287(1)
12.2 Calculation of photoelectrochemical efficiency
288(2)
12.3 Materials for photoelectrochemical water splitting
290(1)
12.4 Titanium dioxide
291(4)
12.5 Zinc oxide
295(5)
12.6 Tungsten oxide
300(3)
12.7 Iron oxide
303(4)
Conclusions
307(1)
References
307(4)
Chapter 13 Synthesis of transition metal sulfide nanostructures for water splitting
311(32)
Sadia Khalid
Mohammad Azad Malik
Ejaz Ahmed
Yaqoob Khan
Waqar Ahmed
13.1 Introduction
311(4)
13.2 Transition metal sulfides
315(3)
13.3 Synthesis of transition metal sulfide nanostructures
318(4)
13.3.1 Colloidal synthesis
318(1)
13.3.2 Hydrothermal method/solvothermal method
319(2)
13.3.3 Coprecipitation method
321(1)
13.3.4 Ion-exchange method
321(1)
13.3.5 Atomic layer deposition
321(1)
13.3.6 Electrodeposition
321(1)
13.3.7 Metal-organic frameworks---derived synthesis
322(1)
13.4 Strategies to improve catalytic performance
322(11)
13.5 Outlook and future perspectives
333(1)
References
334(9)
II Nanotechnology for energy transport
343(62)
14 Applications of nanofluids in thermal energy transport
345(24)
Saman Rashidi
Faramarz Hormozi
Nader Karimi
Waqar Ahmed
14.1 Introduction
345(1)
14.2 Possible mechanisms for heat transfer improvement by nanofluids
346(2)
14.2.1 Enhancement in thermal conductivity
346(1)
14.2.2 Influence of Brownian motion
347(1)
14.2.3 Thermophoresis
347(1)
14.2.4 Turbulence intensification
347(1)
14.2.5 Clustering of nanoparticles
348(1)
14.3 Modern nanofluids
348(11)
14.3.1 Magnetic nanofluids
348(5)
14.3.2 Graphene nanofluids
353(2)
14.3.3 Hybrid nanofluids
355(2)
14.3.4 Carbon nanotube-based nanofluids
357(2)
14.4 Applications of nanofluids in thermal energy transport
359(7)
14.4.1 Thermosyphons
359(1)
14.4.2 Electronics cooling
360(4)
14.4.3 Heat exchangers
364(1)
14.4.4 Refrigeration systems
365(1)
14.5 Summary and perspectives
366(1)
References
367(2)
15 Nanotechnology for smart grids and superconducting cables
369(36)
Raja Sekhar Dondapati
Sudheer Thadela
15.1 Introduction to smart grids
369(4)
15.1.1 Power transmission
370(1)
15.1.2 Power distribution
371(1)
15.1.3 Summary
372(1)
15.2 Nanotechnology for power applications
373(8)
15.2.1 Classification of nanoparticles and nanofluids
374(5)
15.2.2 Synthesis of nanoparticles and their properties
379(1)
15.2.3 Preparation of nanofluids and their properties
379(2)
15.2.4 Summary of the role of nanotechnology for power applications
381(1)
15.3 Superconducting power cables for smart grids
381(19)
15.3.1 Design of superconducting cables for large-scale power transmission
381(11)
15.3.2 Cooling of superconducting cables using nanofluids
392(6)
15.3.3 Performance of smart grids based on superconductors
398(1)
15.3.4 Summary of the role of superconducting cables on smart grids
399(1)
References
400(5)
III Nanotechnology for energy storage
405(186)
16 Transition metal sulfides for supercapacitors
407(40)
Sadia Khalid
Yaqoob Khan
Ejaz Ahmed
Saima Nawaz
N.R. Khalid
Waqar Ahmed
16.1 Introduction
407(1)
16.2 Supercapacitor electrode materials
408(1)
16.3 Metal sulfides
409(1)
16.4 3D-transition metal sulfides
410(16)
16.4.1 Manganese sulfide
412(1)
16.4.2 Iron sulfide
413(4)
16.4.3 Cobalt sulfide
417(3)
16.4.4 Nickel sulfide
420(3)
16.4.5 Copper sulfide
423(2)
16.4.6 Zinc sulfide
425(1)
16.5 Transition metal sulfides: composites
426(9)
16.5.1 Transition metal sulfide composites with carbon nanotubes
426(1)
16.5.2 Transition metal sulfide composites with carbon
427(3)
16.5.3 Transition metal sulfide composites with graphene
430(2)
16.5.4 Transition metal sulfide composites with other materials
432(3)
16.6 Ternary transition metal sulfides
435(2)
16.7 Recent trends: nanostructured supercapacitors
437(2)
16.8 Summary and perspectives
439(2)
References
441(6)
17 Recent developments in chemical energy storage
447(48)
Ehsan Nourafkan
Hossein Esmaeili
Waqar Ahmed
17.1 Introduction
447(3)
17.2 Physisorption and chemisorption for gas storage
450(1)
17.3 Adsorption isotherm and adsorption enthalpy
451(3)
17.4 Porous structure
454(35)
17.4.1 Carbon-based materials
454(4)
17.4.2 Metal organic frameworks
458(18)
17.4.3 Porous organic polymers
476(13)
17.5 Conclusions
489(1)
References
489(6)
18 Nanotechnology for energy storage
495(22)
Afrah Awad
Waqar Ahmed
Muayad Waleed
18.1 Introduction
495(2)
18.2 Nano-enhanced phase-change material
497(13)
18.2.1 Nano-enhanced phase-change material properties
497(7)
18.2.2 Nano-enhanced phase-change materials for energy storage systems
504(6)
18.3 Application of nano-enhanced phase-change materials
510(1)
18.4 Modeling of nano-enhanced phase-change materials
511(2)
18.5 Summary
513(1)
References
513(4)
19 Recent developments in battery technologies
517(28)
H. Amli
M. Booth
V. Dhanak
Waqar Ahmed
19.1 Introduction
517(1)
19.2 Brief history of batteries
517(1)
19.3 Basic battery structure
518(1)
19.3.1 Cathode
518(1)
19.3.2 Anode
518(1)
19.3.3 Electrolyte
518(1)
19.3.4 Separator
518(1)
19.4 Shapes of batteries
519(2)
19.4.1 Cylindrical cell
519(1)
19.4.2 Button (coin) cell
520(1)
19.4.3 Prismatic cell
520(1)
19.4.4 Pouch cell
521(1)
19.5 Electrochemical reactions in batteries
521(2)
19.5.1 Formation reaction
522(1)
19.5.2 Displacement reaction
522(1)
19.5.3 Decomposition reaction
522(1)
19.5.4 Insertion reaction
523(1)
19.6 Primary batteries (nonrechargeable)
523(1)
19.6.1 Zinc---carbon batteries
523(1)
19.6.2 Alkaline batteries
524(1)
19.7 Storage batteries (rechargeable)
524(1)
19.7.1 Nickel---cadmium batteries
524(1)
19.7.2 Lithium-ion batteries
525(1)
19.8 Batteries versus supercapacitors
525(1)
19.9 Common materials used in batteries
526(1)
19.10 Rechargeable battery technology
526(4)
19.10.1 Theory behind lithium ion batteries
526(1)
19.10.2 Lithium-ion battery structure
527(1)
19.10.3 Terms and features for rechargeable batteries
527(1)
19.10.4 Battery energy density calculations
528(2)
19.11 Battery materials selection
530(10)
19.11.1 Cathode materials
531(2)
19.11.2 Other batteries: challenges and solutions
533(3)
19.11.3 Anode materials
536(2)
19.11.4 Electrolytes
538(1)
19.11.5 Separators
539(1)
19.11.6 Binders and surfactants
540(1)
19.12 Conclusions
540(1)
References
540(5)
20 Development of electrode materials for high-performance supercapacitors
545(14)
Gowhar Ahmad Naikoo
Israr Ul Hassan
Riyaz Ahmad Dar
Waqar Ahmed
20.1 Introduction
545(9)
20.1.1 Nanostructured porous materials
545(2)
20.1.2 Carbon-based nanoporous materials
547(1)
20.1.3 Metals and metal oxide
548(2)
20.1.4 Metals and metal oxide composite materials
550(4)
20.2 Conclusions
554(1)
References
554(5)
21 Mathematical modeling of sustainable energy production using nanotechnology
559(32)
Mohammadreza Alizadeh Behjani
Mohammed S. Ismail
Waqar Ahmed
Mohamed Pourkashanian
Ali Hassanpour
21.1 Introduction
559(2)
21.1.1 Recent developments in sustainable energy based on computational nanotechnology
559(2)
21.1.2 Theoretical models and mathematical correlations
561(1)
21.2 Computational techniques
561(1)
21.3 Discrete approaches
562(1)
21.3.1 Molecular dynamics
562(1)
21.4 Continuum approaches
563(17)
21.4.1 Computational fluid dynamics
563(7)
21.4.2 Finite element method
570(10)
21.5 Statistical approaches
580(5)
21.5.1 Fractal methods
580(1)
21.5.2 Monte Carlo and fractal method
581(4)
21.6 Summary and conclusions
585(2)
References
587(4)
Index 591
Waqar Ahmed is a Professor of Nanoscience and Deputy Head of School at the School of Mathematics and Physics, University of Lincoln, UK. His research focuses in the areas of nanoscience, nanotechnology and nanomedicine. In particular, the emphasis of his research at present focuses on nanoscience and nanotechnology for renewable energy, energy modelling and management and sustainability. Matthew Booth is a Lecturer in Experimental Physics at the School of Mathematics and Physics, University of Lincoln, UK. His research focuses on semiconductor nanocrystals. Dr. Ehsan Nourafkan graduated in Chemical Engineering from the University of Shiraz. He then worked for two years in the industry before joining the University of Leeds in 2015. At Leeds, he has worked as a post-doc researcher on an ERC funded project entitled NanoEOR for three years. Then he moved to the University of Lincoln as a research fellow in 2018 for the next stage of his career. His research interests mainly involve focusing on application of nanotechnology for a wide spectrum of energy sectors, particularly in production, transport and storage of renewable energy. He also has experience of delivering consultancy services for the waste incineration industry, as well as working collaboratively with researchers across the world.