Atjaunināt sīkdatņu piekrišanu

E-grāmata: Emerging Resistive Switching Memories

  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Materials
  • Izdošanas datums: 04-Jul-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319315720
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : SpringerBriefs in Materials
  • Izdošanas datums: 04-Jul-2016
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319315720

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This brief describes how non-volatile change of the resistance , due to the application of electric voltage allows for fabrication of novel digital memory devices. The author explains the physics of the devices and provides a concrete description of the materials involved as well as the fundamental properties of the technology. He details how charge trapping, charge transfer and conductive filament formation effect resistive switching memory devices.

Introduction to history of memory devices and the present memory devices.- Introduction of resistive switches memory devices with nanoparticles.- Structure, fabrication and operation of devices with a triple-layer structure sandwiched between two electrode.- Structure, fabrication and operation of devices with a single layer structure sandwiched between two electrode.- Resistive switching devices exploiting the charge transfer between metal electrode and metal nanoparticles.- Mechanisms for resistive switches.- Application of the resistive switching devices with nanoparticles.
1 Introduction
1(12)
1.1 Structure and Resistive Switches of RRAMs
2(3)
1.2 Operation of RRAMs
5(3)
1.3 Materials for RRAMs
8(2)
1.4 Outlook of RRAMs
10(3)
References
10(3)
2 RRAMs with Organic/Polymer Films Blended with Nanoparticles
13(16)
2.1 Triple-Layer Organic RRAMs
13(5)
2.2 Polymer RRAMs with Nanoparticles Embedded in a Polymer Layer
18(2)
2.3 Polymer RRAMs with Charge Trapping on Fullerene and Its Derivatives
20(1)
2.4 Mechanisms for Resistive Switches
21(5)
2.4.1 Electric Field-Induced Charge Transfer Between NPs and Organic Semiconductor
22(1)
2.4.2 Charge Trapping on NPs
23(2)
2.4.3 Electric Field-Induced Polarization of the Metal NP Layer
25(1)
2.5 Conclusion
26(3)
References
26(3)
3 RRAMs with Hybrid Organic--Inorganic Nanocomposites
29(14)
3.1 RRAMs with NPs Capped with Conjugated Organic Ligand
29(2)
3.2 Polymer RRAMs with Polymer--NP Nanocomposites
31(3)
3.3 Polymer RRAMs Exploring the Contacts Between Metal NPs and Bulk Metal Electrodes
34(7)
3.4 Conclusions
41(2)
References
41(2)
4 RRAMs with Organic Donor and Acceptor
43(20)
4.1 RRAMs with Donor and Accepter Materials
43(5)
4.2 RRAMs with Donor-Acceptor Molecules and Polymers
48(6)
4.3 RRAMs with Donor-Acceptor Polymers
54(5)
4.4 Conclusions
59(4)
References
59(4)
5 Nanoionic RRAMs
63(14)
5.1 RRAMs with Anion Migration
63(6)
5.2 RRAMs with Cation Migration
69(3)
5.2.1 Metal Filament Growth from Counter Electrode to Active Electrode
70(1)
5.2.2 Metal Filament Growth from Active Electrode to Counter Electrode
71(1)
5.2.3 Metal Filament Growth from the Middle Region Toward Both Electrodes
72(1)
5.3 Conclusions
72(5)
References
73(4)
6 RRAMs with One-Dimensional and Two-Dimensional Materials
77
6.1 RRAMs with Oxide Nanowires
77(5)
6.1.1 Resistive Switches of Isolated Oxide Nanowires
77(2)
6.1.2 Resistive Switches of Segmented Metal-Oxide Nanowires
79(1)
6.1.3 Resistive Switches of Core-Shell Nanowires
80(2)
6.2 Nanoelectromechanical RRAMs with One-Dimensional Nanotubes or Nanowires
82(3)
6.3 RRAMs with Graphene
85(4)
6.3.1 Physical Switches
85(2)
6.3.2 Chemical Switches
87(2)
6.4 RRAMs with Other Two-Dimensional Materials
89(1)
6.5 Conclusions
90
References
91
Jianyong Ouyang is an Associate Professor in the Department of Materials Science and Engineering at National University of Singapore.