Atjaunināt sīkdatņu piekrišanu

Enabling 5G Communication Systems to Support Vertical Industries [Hardback]

  • Formāts: Hardback, 288 pages, height x width x depth: 246x175x20 mm, weight: 590 g
  • Sērija : IEEE Press
  • Izdošanas datums: 16-Aug-2019
  • Izdevniecība: Wiley-IEEE Press
  • ISBN-10: 111951553X
  • ISBN-13: 9781119515531
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 128,77 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 288 pages, height x width x depth: 246x175x20 mm, weight: 590 g
  • Sērija : IEEE Press
  • Izdošanas datums: 16-Aug-2019
  • Izdevniecība: Wiley-IEEE Press
  • ISBN-10: 111951553X
  • ISBN-13: 9781119515531
Citas grāmatas par šo tēmu:

How 5G technology can support the demands of multiple vertical industries

Recent advances in technologyhave created new vertical industries that are highly dependent on the availability and reliability of data between multiple locations. The 5G system, unlike previous generations, will be entirely data driven—addressing latency, resilience, connection density, coverage area, and other vertical industry criteria. Enabling 5G Communication Systems to Support Vertical Industries demonstrates how 5G communication systems can meet the needs unique to vertical industries for efficient, cost-effective delivery of service. Covering both theory and practice, this book explores solutions to problems in specific industrial sectors including smart transportation, smart agriculture, smart grid, environmental monitoring, and disaster management. 

The 5G communication system will have to provide customized solutions to accommodate each vertical industry’s specific requirements. Whether an industry practitioner designingthe next generation of wireless communications or a researcher needing to identify open issues and classify their research, this timely book:

  • Covers the much-discussed topics of supporting multiple vertical industries and new ICT challenges
  • Addresses emerging issues and real-world problems surrounding 5G technology in wireless communication and networking
  • Explores a comprehensive array of essential topics such as connected health, smart transport, smart manufacturing, and more
  • Presents important topics in a clear, concise style suitable for new learners and professionals alike
  • Includes contributions from experts and industry leaders, system diagrams, charts, tables, and examples

Enabling 5G Communication Systems to Support Vertical Industries is a valuable resource telecom engineers industry professionals, researchers, professors, doctorate, and postgraduate students requiring up-to-date information on supporting vertical industries with 5G technology systems.

About the Editors xi
List of Contributors
xiii
Preface xvii
1 Enabling the Verticals of 5G: Network Architecture, Design and Service Optimization
1(1)
Andy Sutton
1.1 Introduction
1(2)
1.2 Use Cases
3(1)
1.3 5G Network Architecture
4(3)
1.4 RAN Functional Decomposition
7(2)
1.5 Designing a 5G Network
9(2)
1.6 Network Latency
11(2)
1.7 5G Network Architecture Design
13(7)
1.8 Summary
20(1)
Acknowledgements
21(1)
References
21(2)
2 Industrial Wireless Sensor Networks and 5G Connected Industries
23(1)
Mohsin Raza
Sajjad Hussain
Nauman Aslam
Hoa Le-Minh
Huan X. Nguyen
2.1 Overview
23(1)
2.2 Industrial Wireless Sensor Networks
24(1)
2.2.1 Wired and Wireless Networks in Industrial Environment
24(1)
2.2.2 Transformation of WSNs for Industrial Applications
24(1)
2.2.3 IWSN Architecture
25(3)
2.3 Industrial Traffic Types and its Critical Nature
28(1)
2.3.1 Safety/Emergency Traffic
28(1)
2.3.2 Critical Control Traffic
28(1)
2.3.3 Low-Risk Control Traffic
28(1)
2.3 A Periodic Monitoring Traffic
28(1)
2.3.5 Critical Nature and Time Deadlines
29(1)
2.4 Existing Works and Standards
30(1)
2.4.1 Wireless Technologies
30(1)
2.4.2 Industry-Related IEEE Standards
31(1)
2.4.2.1 IEEE 802.15.4
31(1)
2.4.2.2 IEEE 802.15.4e
32(1)
2.5 Ultra-Reliable Low-Latency Communications (URLLC) in IWSNS
33(4)
2.6 Summary
37(4)
References
37(4)
3 Haptic Networking Supporting Vertical Industries
41(1)
Luis Sequeira
Konstantinos Antonakoglou
Maliheh Mahlouji
Toktam Mahmoodi
3.1 Tactile Internet Use Cases and Requirements
41(4)
3.1.1 Quality of Service
42(1)
3.1.2 Use Cases and Requirements
43(2)
3.2 Teleoperation Systems
45(1)
3.2.1 Classification of Teleoperation Systems
45(1)
3.2.2 Haptic Control and Data Reduction
46(2)
3.2.2.1 Performance of Teleoperation Control Schemes
48(11)
3.2.2.2 Haptic Data Reduction
59(1)
3.2.2.3 Kinesthetic Data Reduction
59(3)
3.2.2.4 Tactile Data Reduction
62(1)
3.2.3 Combining Control Schemes and Data Reduction
63(1)
Acknowledgment
64(1)
References
64(11)
4 5G-Enhanced Smart Grid Services
75(1)
Muhammad Ismail
Islam Safak Bayram
Khalid Qaraqe
Erchin Serpedin
4.1 Introduction
75(3)
4.2 Smart Grid Services and Communication Requirements
78(12)
4.2.1 Smart Grid Fundamentals
78(1)
4.2.1.1 Data Collection and Management Services
78(3)
4.2.1.2 Control and Operation Services
81(6)
4.2.2 Communication Requirements for Smart Grid Services
87(3)
4.3 Smart Grid Services Supported by 5G Networks
90(9)
4.3.1 Data Collection and Management Services
90(1)
4.3.1.1 Data Collection Services
91(4)
4.3.1.2 Data Management Services
95(1)
4.3.2 Operation Decision-Making Services
96(1)
4.3.2.1 Demand Side Management Services
96(2)
4.3.2.2 Electric Vehicle Charging and Discharging Services
98(1)
4.4 Summary and Future Research
99(1)
Acknowledgment
100(1)
References
100(3)
5 Evolution of Vehicular Communications within the Context of 5G Systems
103(1)
Kostas Katsaros
Mehrdad Dianati
5.1 Introduction
103(1)
5.2 Vehicular Connectivity
104(1)
5.2.1 Cellular V2X
105(1)
5.2.1.1 Release 14 - First C-V2X Services
105(3)
5.2.1.2 Release 15 - First Taste ofSG
108(1)
5.2.1.3 Release 16 - Fully-Fledged 5G
108(2)
5.2.2 Dedicated Short Range Communication (DSRC)
110(1)
5.2.2.1 Co-Existence
110(1)
5.2.3 Advanced Technologies
111(1)
5.2.3.1 Multi-Access Edge Computing
111(2)
5.2.3.2 Network Slicing
113(1)
5.3 Data Dissemination
114(1)
5.3.1 Context-Aware Middleware
114(2)
5.3.2 Heterogeneity and Interoperability
116(2)
5.3.3 Higher Layer Communication Protocols
118(3)
5.4 Towards Connected Autonomous Driving
121(1)
5.4.1 Phase 1 - Awareness Driving Applications
122(1)
5.4.2 Phase 2 - Collective Perception
122(1)
5.4.3 Phase 3/4 - Trajectory/Manoeuvre Sharing
123(1)
5.4.4 Phase 5 - Full Autonomy
123(1)
5.5 Conclusions
123(1)
References
124(3)
6 State-of-the-Art of Sparse Code Multiple Access for Connected Autonomous Vehicle Application
127(1)
Yi Lu
Chong Han
Carsten Maple
Mehrdad Dianati
Alex Mouzakitis
6.1 Introduction
127(3)
6.2 Sparse Code Multiple Access
130(4)
6.3 State-of-the-Art
134(1)
6.3.1 Codebook Design
134(3)
6.3.2 Decoding/Detecting Techniques for SCMA
137(1)
6.3.3 Other Research on Performance Evaluation of SCMA
138(2)
6.4 Conclusion and Future Work
140(9)
References
145(4)
7 5G Communication Systems and Connected Healthcare
149(1)
David Soldani
Matteo Innocenti
7.1 Introduction
149(2)
7.2 Use Cases and Technical Requirements
151(1)
7.2.1 Wireless Tele Surgery
151(1)
7.2.2 Wireless Service Robots
151(1)
7.3 5G communication System
154(1)
7.3.1 3GPP Technology Roadmap
154(1)
7.3.2 5G Spectrum
155(1)
7.3.3 5G Reference Architecture
155(6)
7.3.4 5G Security Aspects
161(1)
7.3.5 5G Enabling Technologies
161(1)
7.3.5.1 5G design for Low-Latency Transmission
162(4)
7.3.5.2 5G design for Higher-Reliability Transmission
166(2)
7.3.6 5G Deployment Scenarios
168(2)
7.4 Value Chain, Business Model and Business Case Calculation
170(1)
7.4.1 Market Uptake for Robotic Platforms
171(1)
7.4.2 Business Model and Value Chain
171(1)
7.4.3 Business case for Service Providers
171(1)
7.4.3.1 Assumptions
172(1)
7.4.3.2 Business Cases Calculation
172(2)
7.5 Conclusions
174(5)
References
175(4)
8 5G: Disruption in Media and Entertainment
179(1)
Stamos Katsigiannis
Wasim Ahmad
Naeem Ramzan
8.1 Multi-Channel Wireless Audio Systems for Live Production
179(2)
8.2 Video
181(1)
8.2.1 Video Compression Algorithms
181(1)
8.2.1.1 HEVC: High Efficiency Video Coding
181(1)
8.2.1.2 VP9
182(1)
8.2.1.3 AVI: AOMedia Video 1
183(1)
8.2.2 Streaming Protocols
183(1)
8.2.2.1 Apple HTTP Live Streaming (HLS)
183(1)
8.2.2.2 Dynamic Adaptive Streaming over HTTP (DASH)
184(1)
8.2.3 Video Streaming Over Mobile Networks
184(1)
8.3 Immersive Media
185(6)
8.3.1 Virtual Reality (VR)
186(1)
8.3.2 Augmented Reality (AR)
186(1)
8.3.3 360-Degree Video
187(1)
8.3.4 Immersive Media Streaming
188(1)
References
189(2)
9 Towards Realistic Modelling of Drone-based Cellular Network Coverage
191(1)
Haneya Naeem Qureshi
Ali Imran
9.1 Overview of Existing Models for Drone-Based Cellular Network Coverage
192(1)
9.2 Key Objectives and Organization of this
Chapter
193(1)
9.3 Motivation
194(1)
9.4 System Model
194(2)
9.5 UAV Coverage Model Development
196(1)
9.5.1 Coverage Probability
196(2)
9.5.2 Received Signal Strength
198(1)
9.6 Trade-Offs between Coverage Radius, Beamwidth and Height
199(2)
9.6.1 Coverage Radius Versus Beamwidth
199(1)
9.6.2 Coverage Radius Versus Height
200(1)
9.6.3 Height Versus Beamwidth
201(1)
9.7 Impact of Altitude, Beamwidth and Radius on RSS
201(2)
9.8 Analysis for Different Frequencies and Environments
203(1)
9.9 Comparison of Altitude and Beamwidth to Control Coverage
204(2)
9.10 Coverage Probability with Varying Tilt Angles and Asymmetric Beamwidths
206(1)
9.11 Coverage Analysis with Multiple UAVs
207(4)
9.12 Conclusion
211(6)
Acknowledgment
211(1)
References
211(2)
Appendix A
213(4)
10 Intelligent Positioning of UAVs for Future Cellular Networks
217(1)
Joao Pedro Battistella Nadas
Paulo Valente Klaine
Rafaela de Paula Parisotto
Richard D. Souza
10.1 Introduction
217(1)
10.2 Applications of UAVs in Cellular Networks
218(1)
10.2.1 Coverage in Rural Areas
218(1)
10.2.2 Communication for Internet of Things
218(1)
10.2.3 Flying Fronthaul/Backhaul
219(1)
10.2.4 Aerial Edge Caching
219(1)
10.2.5 Pop-Up Networks
219(1)
10.2.6 Emergency Communication Networks
220(1)
10.3 Strategies for Positioning UAVs in Cellular Network
221(1)
10.4 Reinforcement Learning
222(1)
10.4.1 Q-Learning
222(1)
10.5 Simulations
223(6)
10.5.1 Urban Model
223(1)
10.5.2 The UAVs
224(1)
10.5.3 Path loss
225(1)
10.5.4 Simulation Scenario
225(1)
10.5.5 Proposed RL Implementation
226(2)
10.5.5.1 Simulation Results
228(1)
10.6 Conclusion
229(4)
References
230(3)
11 Integrating Public Safety Networks to 5G: Applications and Standards
233(1)
Usman Raza
Muhammad Usman
Muhammad Rizwan Asghar
Imran Shafique Ansari
Fabrizio Oranelli
11.1 Introduction
233(2)
11.2 Public Safety Scenarios
235(1)
11.2.1 In-Coverage Scenario
235(1)
11.2.2 Out-of-Coverage Scenario
236(1)
11.2.3 Partial-Coverage Scenario
236(1)
11.3 Standardization Efforts
236(9)
11.3.1 3rd Generation Partnership Project
237(1)
11.3.1.1 Release 8
237(1)
11.3.1.2 Release 9
237(1)
11.3.1.3 Release 10
238(1)
11.3.1.4 Release 11
238(1)
11.3.1.5 Release 12
238(2)
11.3.1.6 Release 13
240(1)
11.3.1.7 Release 14
241(1)
11.3.1.8 Released
241(1)
11.3.2 Open Mobile Alliance
242(1)
11.3.2.1 PTT over Cellular
242(1)
11.3.2.2 Push to Communicate for Public Safety (PCPS)
242(1)
11.3.3 Alliance for Telecommunication Industry Solutions
242(1)
11.3.3.1 Energy and Utility Sector
243(1)
11.3.3.2 Building Alarm Systems
243(1)
11.3.3.3 PS Communications with Emergency Centers
243(1)
11.3.3.4 Smart City Solutions
243(1)
11.3.4 APCO Global Alliance
244(1)
11.3.5 Groupe Speciale Mobile Association (GSMA)
244(1)
11.4 Future Challenges and Enabling Technologies
245(3)
11.4.1 Future challenges
246(1)
11.4.1.1 Connectivity
246(1)
11.4.1.2 Interoperability
246(1)
11.4.1.3 Resource Scarceness
247(1)
11.4.1.4 Security
247(1)
11.4.1.5 Big Data
247(1)
11.4.2 Enabling Technologies
248(1)
11.4.2.1 Software-Defined Networking
248(1)
11.4.2.2 Cognitive Radio Networks
248(1)
11.4.2.3 Non-orthogonal Multiple Access
248(1)
11.5 Conclusion
248(5)
References
249(4)
12 Future Perspectives
253(1)
Muhammad Ali Imran
Yusuf Abdulrahman Sambo
Qammer H. Abbasi
12.1 Enabling Rural Connectivity
253(1)
12.2 Key Technologies for the Design of beyond 5G Networks
254(1)
12.2.1 Blockchain
254(1)
12.2.2 Terahertz Communication
255(1)
12.2.3 LiFi
255(1)
12.2.4 Wireless Power Transfer and Energy Harvesting
256(1)
Index 257
MUHAMMAD ALI IMRAN is the Vice Dean of Glasgow College UESTC and Professor of Communication Systems in the School of Engineering at the University of Glasgow, UK. He is a senior member of IEEE, a Fellow of IET, and a Senior Fellow of the Higher Education Academy, UK.

YUSUF ABDULRAHMAN SAMBO is a Research Associate in the School of Engineering at the University of Glasgow, UK. He is also the University of Glasgow 5G Self-Organised Network (5GSON) testbed lead. Dr. Sambo is an IEEE member.

QAMMER H. ABBASI is an Assistant Professor in the School of Engineering at the University of Glasgow, UK, and Visiting Assistant Professor with Queen Mary University of London, UK. Dr. Abbasi is an IEEE senior member and URSI Young Scientist Award winner. He is Associate editor for the IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology, IEEE Access and the Journal of Applied Electromagnetics.