Atjaunināt sīkdatņu piekrišanu

Energy 2012 [Hardback]

(Department of Chemical Engineering, Virginia Tech, USA)
  • Formāts: Hardback, 528 pages, height x width x depth: 234x156x28 mm, weight: 949 g, 96 black & white tables, biography, Contains 1 Book and 1 Digital online
  • Sērija : Green Energy and Technology
  • Izdošanas datums: 25-Jan-2012
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1447123719
  • ISBN-13: 9781447123712
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 64,72 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 76,15 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 528 pages, height x width x depth: 234x156x28 mm, weight: 949 g, 96 black & white tables, biography, Contains 1 Book and 1 Digital online
  • Sērija : Green Energy and Technology
  • Izdošanas datums: 25-Jan-2012
  • Izdevniecība: Springer London Ltd
  • ISBN-10: 1447123719
  • ISBN-13: 9781447123712
Citas grāmatas par šo tēmu:
Understanding the sustainable use of energy in various processes is an integral part of engineering and scientific studies, which rely on a sound knowledge of energy systems. Whilst many institutions now offer degrees in energy-related programs, a comprehensive textbook, which introduces and explains sustainable energy systems and can be used across engineering and scientific fields, has been lacking. Energy: Production, Conversion, Storage, Conservation, and Coupling provides the reader with a practical understanding of these five main topic areas of energy including 130 examples and over 600 practice problems. Each chapter contains a range of supporting figures, tables, thermodynamic diagrams and charts, while the Appendix supplies the reader with all the necessary data including the steam tables. This new textbook presents a clear introduction of basic vocabulary, properties, forms, sources, and balances of energy before advancing to the main topic areas of: * Energy production and conversion in important physical, chemical, and biological processes, * Conservation of energy and its impact on sustainability, * Various forms of energy storage, and * Energy coupling and bioenergetics in living systems. A solution manual for the practice problems of the textbook is offered for the instructor. Energy: Production, Conversion, Storage, Conservation, and Coupling is a comprehensive source, study guide, and course supplement for both undergraduates and graduates across a range of engineering and scientific disciplines. Resources including the solution manual for this textbook are available for instructors on sending a request to Dr. Ya ar Demirel at ydemirel@unl.edu
1 Introduction: Basic Definitions
1(26)
1.1 System
1(1)
1.2 Property and Variables
2(1)
1.3 Dimensions and Units
2(1)
1.4 Measures of Amounts and Fractions
3(2)
1.5 Force
5(1)
1.6 Temperature
6(2)
Example 1.1 Conversion of temperature units
7(1)
1.7 Pressure
8(2)
Example 1.2 Pressure calculations
9(1)
Example 1.3 Pressure conversions
10(1)
Example 1.4 Absolute pressure estimations
10(1)
1.8 Volume
10(2)
1.9 State
12(7)
1.9.1 Thermodynamic Equilibrium State
13(1)
1.9.2 Ideal-Gas Equation of State
13(1)
1.9.3 Saturated Liquid and Saturated Vapor State
14(1)
1.9.4 Steam Tables
14(2)
Example 1.5 Energy change during evaporation
16(1)
Example 1.6 Energy change during condensation
16(1)
1.9.5 Saturated Liquid-Vapor Mixture
17(1)
Example 1.7 Quality of a saturated liquid and vapor mixture of a steam
17(1)
1.9.6 Partial Pressure and Saturation Pressure
18(1)
Example 1.8 Estimation of saturated vapor pressure
18(1)
1.10 Process
19(8)
Problems
21(5)
References
26(1)
2 Energy and Energy Types
27(44)
2.1 Energy
27(1)
2.2 Energy Types
28(2)
2.2.1 Primary Energy
28(1)
2.2.2 Secondary Energy
29(1)
2.3 Non Renewable Energy Sources
30(7)
2.3.1 Coal
31(1)
2.3.2 Petroleum (Crude Oil)
32(1)
2.3.3 Petroleum Fractions
33(2)
2.3.4 Natural Gas
35(1)
2.3.5 Nuclear Energy
36(1)
2.4 Heating Value of Fuels
37(5)
2.4.1 Energy Density
37(1)
Example 2.1 Energy consumption by a car
38(1)
Example 2.2 Fuel consumption by a low and a high-mileage car
38(3)
Example 2.3 Daily consumption of natural gas by a city
41(1)
Example 2.4 Energy consumed by a car
41(1)
2.5 Renewable Energy Resources
42(14)
2.5.1 Hydroenergy
43(1)
2.5.2 Solar Energy
43(5)
2.5.3 Biomass and Bioenergy
48(3)
Example 2.5 Gross heating value estimations
51(2)
2.5.4 Wind Energy
53(1)
2.5.5 Geothermal Energy
54(1)
2.5.6 Ocean Energy
55(1)
2.5.7 Projection on Renewable Energy Contributions
56(1)
2.6 Hydrogen
56(1)
2.7 Electric Energy
57(2)
Example 2.6 Electricity consumption of a laptop computer
59(1)
2.8 Magnetic Energy
59(1)
2.9 Chemical Energy
60(1)
2.10 Energy and Global Warming
60(3)
Example 2.7 Carbon dioxide emission from natural gas combustion
62(1)
2.11 Tackling the Global Warming
63(8)
Example 2.8 Consumption of coal and emission of carbon dioxide from coal
63(1)
Example 2.9 Reducing air pollution by geothermal heating
64(1)
Student Concern of Global Warning
64(1)
Problems
65(3)
References
68(3)
3 Mechanical Energy and Electrical Energy
71(28)
3.1 Mechanical Energy
71(1)
3.2 Kinetic Energy
72(1)
Example 3.1 Calculation of the kinetic energy for a flowing fluid
72(1)
Example 3.2 Kinetic energy of a car
73(1)
3.3 Potential Energy
73(2)
Example 3.3 Potential energy change of water
74(1)
Example 3.4 Energy of an elevator
75(1)
3.4 Pressure Energy
75(3)
Example 3.5 Pressure energy of a hydraulic turbine
76(1)
3.4.1 Pressure Head
76(1)
Example 3.6 Pumping water
77(1)
Example 3.7 Calculation of the power needed to pump water
77(1)
3.5 Surface Energy
78(1)
3.6 Sound Energy
78(1)
3.7 Mechanical Work
79(8)
3.7.1 Power
79(1)
Example 3.8 Power conversions
80(1)
3.7.2 Boundary Work
81(1)
Example 3.9 Expansion and compression work of an ideal gas
82(1)
Example 3.10 Isothermal compression work
83(1)
3.7.3 Isentropic Process Work
83(1)
Example 3.11 Isentropic compression of air
84(1)
3.7.4 Polytropic Process Work
84(1)
Example 3.12 Calculation of work done by a piston on an ideal gas
84(1)
Example 3.13 Polytropic expansion of air
85(1)
3.7.5 Shaft Work
86(1)
Example 3.14 Estimation of shaft power
86(1)
3.7.6 Spring Work
86(1)
Example 3.15 Estimation of spring work
87(1)
3.8 Electric Energy
87(4)
3.8.1 Electric Potential Energy
88(1)
3.8.2 Estimation of Electrical Energy
89(1)
3.8.3 Electric Power
89(1)
3.8.4 Capacitance
90(1)
Example 3.16 Estimation of electrical work
91(1)
3.9 Other Forms of Work
91(8)
Problems
92(6)
References
98(1)
4 Internal Energy and Enthalpy
99(48)
4.1 Internal Energy
99(2)
4.2 Enthalpy
101(6)
Example 4.1 Unit conversions of heat capacity
103(1)
Example 4.2 Calculation of internal energy change
104(1)
Example 4.3 Determination of state properties
105(1)
Example 4.4 Heat value of a saturated liquid and vapor mixture of a steam
106(1)
4.3 Heat
107(12)
4.3.1 Sensible Heat
108(1)
4.3.2 Latent Heat
109(1)
4.3.3 Heating with Phase Change
110(1)
Example 4.5 Calculation of heat of vaporization using Antoine equation and Clasius-Clapeyron equation
111(1)
Example 4.6 Estimation of change of enthalpy with sensible and latent heat
112(1)
Example 4.7 Estimation of heat of vaporization at another temperature
113(1)
4.3.4 Heat of Reaction
113(2)
Example 4.8 Estimation of standard heat of reaction
115(1)
Example 4.9 Estimation of standard heats of reaction from standard heats of formation
116(1)
4.3.5 Standard Heat of Combustion
117(1)
Example 4.10 Determination of standard heats of reaction
118(1)
Example 4.11 Estimation of standard heats of combustion from standard heats of formation
118(1)
4.4 Effect of Temperature on the Heat of Reaction
119(2)
Example 4.12 Estimation of standard heat of reaction at a temperature other than 298 K
120(1)
4.5 Standard Enthalpy Changes
121(1)
4.6 Adiabatic Flame Temperature
121(3)
Example 4.13 Maximum flame temperature
122(2)
4.7 Air Pollution from Combustion Processes
124(1)
4.8 Heat of Mixing
124(2)
Example 4.14 Estimation of partial enthalpies
124(2)
4.9 Heat Measurements by Calorimeter
126(1)
Example 4.15 Measurement of heat capacity of a metal in a calorimeter
126(1)
4.10 Psychrometric Diagram
127(3)
Example 4.16 Determination of air properties on a psychrometric chart
129(1)
4.11 Heat Transfer
130(3)
Example 4.17 Estimation of radiation heat transfer
132(1)
4.12 Entropy
133(1)
4.13 Exergy
134(1)
4.14 Fluid-Flow Work
135(12)
Problems
136(9)
References
145(2)
5 Energy Balances
147(28)
5.1 Balance Equations
147(1)
5.2 Mass Balance
148(2)
5.3 Energy Balance
150(3)
5.3.1 Unsteady-State Flow Systems
150(1)
5.3.2 Steady-State Flow Systems
151(1)
Example 5.1 Closed system energy balance calculations
152(1)
5.4 Entropy Balance
153(1)
5.5 Exergy Balance
154(2)
Example 5.2 Exergy loss calculations
155(1)
5.6 Fluid-Flow Processes
156(9)
5.6.1 Turbines Compressors and Pumps
156(1)
Example 5.3 Turbine calculations
157(1)
Example 5.4 Compressor calculations
157(1)
Example 5.5 Pump power calculation
158(1)
5.6.2 Nozzles and Diffusers
159(1)
Example 5.6 Nozzle calculations
159(1)
5.6.3 Mixing Chambers
160(1)
Example 5.7 Mixing chamber calculations
160(1)
5.6.4 Throttling Valve
161(1)
Example 5.8 Throttling process calculations
162(1)
Example 5.9 Throttling of a refrigerant
162(1)
5.6.5 Heat Exchangers
163(1)
Example 5.10 Heat exchanger calculations
163(1)
5.6.6 Pipe and Duct Flows
164(1)
5.7 Energy Balance in a Cyclic Process
165(10)
Problems
166(7)
References
173(2)
6 Energy Production
175(54)
6.1 Energy Production
175(1)
6.2 Electric Power Production
175(3)
Example 6.1 Power production by an adiabatic steam turbine
177(1)
6.3 Transmission of Energy
178(2)
6.3.1 Distributed Energy Resources
179(1)
6.4 Power Producing Engine Cycles
180(9)
Example 6.2 Steam power production
181(1)
Example 6.3 Steam flow rate calculation in a power plant
182(1)
6.4.1 Carnot Cycle
183(1)
Example 6.4 Power output from a Carnot cycle
183(1)
6.4.2 Rankine Cycle
184(2)
Example 6.5 Analysis of a simple ideal Rankine cycle
186(1)
6.4.3 Brayton Cycle
187(1)
6.4.4 Stirling Engine
188(1)
6.4.5 Combined Cycles
189(1)
6.5 Improving the Power Production in Steam Power Plants
189(6)
6.5.1 Modification of Operating Conditions of the Condenser and Boiler
189(1)
6.5.2 Reheating the Steam
190(1)
Example 6.6 Simple reheat Rankine cycle in a steam power plant
190(2)
6.5.3 Regeneration
192(1)
Example 6.7 Power output of ideal regenerative Rankine cycle
192(2)
6.5.4 Reheat-Regenerative Rankine Cycle
194(1)
Example 6.8 Ideal reheat-regenerative cycle
194(1)
6.6 Geothermal Power Plants
195(2)
Example 6.9 A steam power plant using a geothermal energy source
196(1)
6.7 Cogeneration
197(3)
Example 6.10 Energy output in a cogeneration plant
198(1)
Example 6.11 Estimation of process heat in a cogeneration plant
199(1)
6.8 Nuclear Power Plants
200(1)
6.9 Hydropower Plants
201(1)
Example 6.12 Hydroelectric power output
202(1)
6.10 Wind Power Plants
202(3)
Example 6.13 Windmill power estimations
204(1)
6.11 Solar Power Plants
205(2)
6.12 Hydrogen Production
207(1)
6.13 Fuel Cells
208(4)
6.13.1 Direct Methanol Fuel Cells
210(1)
6.13.2 Microbial Fuel Cell
211(1)
6.14 Biomass and Bioenergy Production
212(4)
6.14.1 Bioethanol Production
213(1)
6.14.2 Biodiesel and Green Diesel Production
213(2)
6.14.3 Energy from Solid Waste
215(1)
6.15 Other Energy Production Opportunities
216(1)
6.16 Levelized Energy Cost
216(2)
6.17 Thermodynamic Cost
218(1)
6.18 Ecological Cost
218(11)
6.18.1 Ecological Planning
219(1)
6.18.2 Coal-Fired Power Plants
220(1)
6.18.3 Nuclear Power Plants
220(1)
Problems
221(5)
References
226(3)
7 Energy Conversion
229(76)
7.1 Energy Conversion
229(2)
7.2 Series of Energy Conversions
231(1)
7.3 Conversion of Chemical Energy of Fuel to Heat
232(2)
7.3.1 Heating Value of a Fuel
232(1)
Example 7.1 Estimation of lower heating value from higher heating value
233(1)
Example 7.2 Estimating the heating values from the standard heat of combustion
233(1)
7.4 Thermal Efficiency of Energy Conversions
234(1)
7.5 Ideal Fluid-Flow Energy Conversions
235(4)
Example 7.3 Maximum work (ideal work) calculations
237(1)
Example 7.4 Isentropic turbine efficiency
238(1)
7.6 Lost Work
239(2)
Example 7.5 Estimation of lost work
239(1)
Example 7.6 Estimation of a minimum power required in a compressor
240(1)
7.7 Efficiency of Mechanical Conversions
241(2)
Example 7.7 Heat loss in an electric motor
242(1)
Example 7.8 Mechanical efficiency of a pump
243(1)
7.8 Conversion of Thermal Energy by Heat Engines
243(30)
Example 7.9 Thermal efficiency of a heat engine
246(1)
Example 7.10 Fuel consumption of a car
246(1)
7.8.1 Air-Standard Assumptions
247(1)
7.8.2 Isentropic Processes of Ideal Gases
247(1)
7.8.3 Conversion of Mechanical Energy by Electric Generator
248(1)
7.8.4 Carnot Engine Efficiency
249(2)
7.8.5 Endoreversible Heat Engine Efficiency
251(1)
7.8.6 Rankine Engine Efficiency
252(1)
Example 7.11 Steam turbine efficiency and power output
252(2)
Example 7.12 Estimation of thermal efficiency of a Rankine cycle
254(2)
7.8.7 Brayton Engine Efficiency
256(2)
Example 7.13 Simple ideal Brayton cycle calculations with variable specific heats
258(1)
Example 7.14 Thermal efficiency of an actual Brayton cycle with variable specific heats
259(2)
Example 7.15 Ideal Brayton cycle with constant specific heats
261(1)
7.8.8 Otto Engine Efficiency
262(2)
Example 7.16 Efficiency calculations of ideal Otto engine with variable specific heats
264(2)
Example 7.17 Efficiency calculations of an ideal Otto cycle with constant specific heats
266(1)
7.8.9 Diesel Engine Efficiency
267(1)
Example 7.18 Thermal efficiency of an ideal Diesel engine with the constant specific heats
268(1)
Example 7.19 Thermal efficiency of an ideal Diesel engine with variable specific heats
269(2)
7.8.10 Ericsson and Stirling Engine Efficiency
271(1)
7.8.11 Atkinson Engine Efficiency
272(1)
7.9 Improving Efficiency of Heat Engines
273(1)
7.10 Hydroelectricity
273(3)
Example 7.20 Efficiency of a hydraulic turbine
274(1)
Example 7.21 Pumped energy in a hydropower plant
275(1)
7.11 Wind Electricity
276(1)
Example 7.22 Efficiency of a wind turbine
276(1)
7.12 Geothermal Electricity
277(1)
7.13 Ocean Thermal Energy Conversion
277(1)
7.14 Thermoelectric Effect
278(1)
7.15 Efficiency of Heat Pumps and Refrigerators
278(7)
7.15.1 Heat Pumps
279(2)
Example 7.23 Heat pump calculations
281(1)
7.15.2 Refrigerators
281(1)
Example 7.24 Analysis of a refrigeration cycle
282(2)
Example 7.25 Heat rejection by a refrigerator
284(1)
Example 7.26 Coefficient of performance of a vapor-compression refrigeration cycle
284(1)
7.16 Efficiency of Fuel Cells
285(1)
7.17 Energy Conversions in Biological Systems
286(19)
7.17.1 Energy Conversion by Oxidative Phosphorylation
286(1)
7.17.2 Energy from Photosynthesis
287(1)
7.17.3 Metabolism
287(1)
7.17.4 Biological Fuels
287(1)
7.17.5 Converting Biomass to Biofuels
288(1)
Problems
289(13)
References
302(3)
8 Energy Storage
305(38)
8.1 Energy Storage and Regulation
305(2)
8.1.1 Water
305(2)
8.1.2 Hydrogen
307(1)
8.2 Types of Energy Storage
307(1)
8.3 Thermal Energy Storage
308(15)
8.3.1 Solar Energy Storage
310(1)
8.3.2 Sensible Heat Storage
311(1)
Example 8.1 Sensible heat storage calculations
311(1)
8.3.3 Latent Heat Storage by Phase Changing Material
312(3)
Example 8.2 Heat storage calculations
315(1)
8.3.4 Ice Storage
316(1)
8.3.5 Molten Salt Technology
316(1)
8.3.6 Seasonal Thermal Energy Storage
317(1)
8.3.7 Seasonal Solar Thermal Energy Storage for Greenhouse Heating
318(3)
Example 8.3 Latent heat storage calculations
321(1)
8.3.8 Underground Thermal Energy Storage Systems
321(1)
8.3.9 Aquifer Thermal Energy Storage
322(1)
8.3.10 Borehole Thermal Energy Systems
323(1)
8.4 Electric Energy Storage
323(6)
8.4.1 Hydroelectric Energy Storage
325(1)
Example 8.4 Pumped energy in a hydropower plant
326(1)
8.4.2 Electric Energy Storage in Battery
326(1)
8.4.3 Rechargeable Battery for Electric Car
327(2)
8.5 Chemical Energy Storage
329(4)
8.5.1 Bioenergy Sources
330(1)
8.5.2 Energy Storage in Biofuels
330(1)
8.5.3 Energy Storage in Voltaic Cell
331(2)
8.6 Mechanical Energy Storage
333(10)
8.6.1 Compressed Air Energy Storage
333(1)
Example 8.5 Maximum air compressed energy storage
334(1)
Example 8.6 Maximum air compressed energy storage in a large cavern
335(1)
8.6.2 Flywheel Energy Storage
335(1)
8.6.3 Hydraulic Accumulator
335(1)
8.6.4 Springs
336(1)
Problems
336(4)
References
340(3)
9 Energy Conservation
343(54)
9.1 Energy Conservation and Recovery
343(1)
9.2 Conservation of Energy in Industrial Processes
344(15)
9.2.1 Energy Conservation in Power Production
344(1)
Example 9.1 Energy conservation by regeneration in a Brayton cycle
345(3)
Example 9.2 Increasing the efficiency of a Rankine cycle by reducing the condenser pressure
348(2)
Example 9.3 Maximum possible efficiency calculation in Example 9.2
350(1)
Example 9.4 Increasing the efficiency of a Rankine cycle by increasing the boiler pressure
351(1)
Example 9.5 Increasing the efficiency of a Rankine cycle by increasing the boiler temperature
352(1)
Example 9.6 Estimation of maximum possible efficiencies in Example 9.5
353(1)
9.2.2 Energy Conservation in the Compression and Expansion Work
354(1)
Example 9.7 Energy conservation in a two-stage compression work by intercooling
355(1)
Example 9.8 Compressor efficiency and power input
356(1)
Example 9.9 Energy conservation in expansion by replacing a throttle valve with a turbine
357(1)
9.2.3 Conservation of Energy by High-Efficiency Electric Motors
358(1)
9.3 Energy Conservation in Home Heating and Cooling
359(5)
9.3.1 Home Heating by Fossil Fuels
360(1)
9.3.2 Home Heating by Electric Resistance
361(1)
9.3.3 Home Heating by Solar Systems
362(1)
Example 9.10 Heating a house by heat pump
363(1)
Example 9.11 Energy conservation in house heating by Carnot heat pump
363(1)
9.4 Energy Efficiency Standards
364(10)
9.4.1 Efficiency of Air Conditioner
365(1)
Example 9.12 Electricity cost of air conditioner
366(1)
9.4.2 Maximum Possible Efficiency for Cooling
366(1)
Example 9.13 Calculating the annual cost of power for an air conditioner
367(1)
Example 9.14 Reducing the cost of cooling with a unit operating at a higher SEER rating
367(1)
9.4.3 Fuel Efficiency
368(1)
Example 9.15 Comparison of energy sources of electricity with natural gas for heating
369(1)
Example 9.16 Overall plant efficiency and required amount of coal in a coal-fired steam power plant
369(1)
Example 9.17 Required amount of coal in a coal-fired steam power plant
370(1)
9.4.4 Fuel Efficiency of Vehicles
371(1)
Example 9.18 Fuel consumption of a car
372(1)
9.4.5 Energy Conservation While Driving
373(1)
Example 9.19 Fuel conservation with a more fuel-efficient car
373(1)
9.4.6 Regenerative Braking
374(1)
9.5 Energy Conservation in Electricity Distribution and Smart Grid
374(3)
9.5.1 Standby Power
375(1)
9.5.2 Energy Conservation in Lighting
375(1)
Example 9.20 Conservation of energy with compact fluorescent bulbs
376(1)
9.5.3 Energy Harvesting
376(1)
9.6 Conservation of Energy and Sustainability
377(1)
9.7 Exergy Conservation and Exergy
378(1)
9.8 Energy Recovery on Utilities Using Pinch Analysis
378(19)
9.8.1 Composite Curves
379(2)
Example 9.21 Energy conservation by the pinch analysis
381(2)
Problems
383(11)
References
394(3)
10 Energy Coupling
397(20)
10.1 Energy Coupling and Gibbs Free Energy
397(1)
10.2 Energy Coupling in Living Systems
398(1)
10.3 Bioenergetics
398(4)
10.3.1 Mitochondria
399(1)
10.3.2 Electron Transport Chain and Adenosine Triphosphate (ATP) Synthesis
400(1)
10.3.3 Active Transport
401(1)
10.4 Simple Analysis of Energy Coupling
402(2)
Example 10.1 Efficiency of energy conversion of photosynthesis
403(1)
10.5 Variation of Energy Coupling
404(4)
10.5.1 Regulation of Energy Coupling
405(2)
10.5.2 Uncoupling
407(1)
10.5.3 Slippages and Leaks
408(1)
10.6 Metabolism
408(2)
10.6.1 Catabolism
409(1)
10.6.2 Anabolism
409(1)
10.7 Bioenergy Sources
410(7)
Example 10.2 Oxidation of glucose
411(1)
Example 10.3 Daily energy expenditure
411(1)
Example 10.4 Energy expenditure in small organisms
412(1)
Example 10.5 Energy expenditure in an adult organism
413(1)
Problems
414(1)
References
415(2)
Appendix A Physical and Critical Properties
417(2)
Table A1 Physical properties of various organic and inorganic substances
417(1)
Table A2 Critical properties
418(1)
Appendix B Heat Capacities
419(4)
Table B1 Heat capacities in the ideal-gas state
419(1)
Table B2 Heat capacities of liquids
420(1)
Table B3 Heat capacities of solids
420(1)
Table B4 Ideal-gas specific heats of various common gases
421(2)
Appendix C Enthalpy and Gibbs Free Energy of Formations at 298.15 K
423(2)
Table C1 Standard enthalpies and Gibbs energies of formation at 298.15 K
423(2)
Appendix D Ideal Gas Properties of Some Common Gases
425(6)
Table D1 Ideal-gas properties of air
425(3)
Table D2 Ideal-gas properties of carbon dioxide, CO2
428(1)
Table D3 Ideal-gas properties of hydrogen, H2
429(2)
Appendix E Thermochemical Properties
431(10)
Table E1 Saturated refrigerant R-134a
431(1)
Table E2 Superheated refrigerant R-134a
432(4)
Table E3 Saturated propane
436(1)
Table E4 Superheated propane
437(4)
Appendix F Steam Tables
441(62)
Table F1 Saturated steam tables in English units
441(3)
Table F2 Superheated steam tables in English units
444(25)
Table F3 Saturated steam tables in SI units
469(4)
Table F4 Superheated steam tables in SI units
473(30)
Index 503