Atjaunināt sīkdatņu piekrišanu

E-grāmata: Energy and Bandwidth-Efficient Wireless Transmission

  • Formāts - PDF+DRM
  • Cena: 118,37 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book introduces key modulation and predistortion techniques for approaching power and spectrum-efficient transmission for wireless communication systems. The book presents a combination of theoretical principles, practical implementations, and actual tests. It focuses on power and spectrally efficient modulation and transmission techniques in the portable wireless communication systems, and introduces currently developed and designed RF transceivers in the latest wireless markets. Most materials, design examples, and design strategies used are based on the author’s two decades of work in the digital communication fields, especially in the areas of the digital modulations, demodulations, digital signal processing, and linearization of power amplifiers. The applications of these practical products and equipment cover the satellite communications on earth station systems, microwave communication systems, 2G GSM and 3G WCDMA mobile communication systems, and 802.11 WLAN systems.>

1 Introduction
1(4)
References
4(1)
2 Bandwidth-Efficient Modulation with Frequency Division Multiple Access (FDMA)
5(72)
2.1 Introduction
5(2)
2.2 Definition of Energy and Spectral Efficiency
7(8)
2.2.1 Bandwidth or Spectrum Efficiency
8(3)
2.2.2 Energy Efficiency
11(4)
2.3 Fundamentals of Modulation
15(3)
2.3.1 The Convolution Property
15(1)
2.3.2 Modulation Property
16(2)
2.4 Digital Baseband Modulation
18(10)
2.4.1 2-Level Pulse Amplitude Modulation (2-PAM) and Binary Phase Shift Keying (BPSK)
19(1)
2.4.2 Quadrature Amplitude Modulation (QAM) and Quadrature Phase Shift Keying (QPSK)
20(4)
2.4.3 Power Spectral Density of Baseband Signals
24(2)
2.4.4 Non-Overlapped Pulse Waveform Modulation
26(2)
2.5 Overlapped Pulse-Shaping Modulation
28(16)
2.5.1 Overlapped Raised-Cosine Pulse-Shaping Modulation
29(4)
2.5.2 IJF-OQPSK Modulation
33(2)
2.5.3 Other Overlapped Pulse-Shaping Modulations
35(5)
2.5.4 Bit Error Rate in Coherent Demodulation
40(4)
2.6 Minimum Bandwidth and ISI-free Nyquist Pulse Shaping
44(33)
2.6.1 Nyquist Minimum Transmission Bandwidth with ISI-Free
44(10)
2.6.2 Analog Filter Approximation to SRRC Filter
54(5)
2.6.3 Digital Filter Approximation to Raised-Cosine Filter
59(5)
2.6.4 Amplitude Compensation for a SINC Function
64(10)
References
74(3)
3 Bandwidth-Efficient Modulation With OFDM
77(76)
3.1 Introduction
77(2)
3.2 Generation of the 802.11a OFDM Signal
79(23)
3.2.1 Preamble Field
80(2)
3.2.2 Signal Field
82(1)
3.2.3 Data Field
83(9)
3.2.4 Spectral Side-Lobe Reduction With Windowing
92(3)
3.2.5 RF Transmitter Description
95(4)
3.2.6 Peak-to-Average Power Ratio (PAPR)
99(3)
3.3 Synchronization of 802.11a OFDM Signal
102(18)
3.3.1 Symbol Timing Synchronization
103(3)
3.3.2 Carrier Frequency Synchronization
106(8)
3.3.3 Channel Estimation Technique
114(6)
3.4 Design Challenges for RF Transceivers
120(25)
3.4.1 RF Transceiver
122(16)
3.4.2 Digital Baseband and MAC Processor
138(4)
3.4.3 Radio Front-End Modules
142(3)
3.5 Design Applications
145(8)
3.5.1 Marvell's WLAN 802.11ac Transceiver
145(1)
3.5.2 Media Tek's 802.11a/b/g/n/ac WLAN SoC
146(3)
References
149(4)
4 Energy and Bandwidth-Efficient Modulation
153(100)
4.1 Introduction
153(1)
4.2 Constant Envelope Modulation of Minimum Shift Keying
154(8)
4.3 Constant Envelope Modulation of GMSK
162(9)
4.3.1 VCO-Based GMSK Modulation
163(1)
4.3.2 Quadrature Architecture of GMSK
163(8)
4.4 Nearly Constant Envelope Modulation of FQPSK
171(11)
4.4.1 XPSK Modulation
175(5)
4.4.2 FQPSK-B
180(2)
4.5 Coherent Demodulation
182(46)
4.5.1 Adaptive Equalization
182(9)
4.5.2 Coherent Detection
191(37)
4.6 RF Transmitter Architectures for GMSK
228(25)
4.6.1 System Specifications of Quad-Band GSM Transmitter
228(1)
4.6.2 Mixer-Based Frequency Up-Conversion
229(1)
4.6.3 Phase-Locked Loop-Based Frequency Up-Conversion
230(20)
References
250(3)
5 Linearization Techniques for RF Power Amplifiers
253(38)
5.1 Introduction
253(1)
5.2 Memory Model of Power Amplifiers
254(8)
5.3 Behavioral Modeling of a Practical Power Amplifier
262(4)
5.4 Power Amplifier Linearization
266(18)
5.4.1 Digital Baseband Pre-distortion
267(10)
5.4.2 RF Analog Pre-distortion
277(5)
5.4.3 Coefficient Adaption of Analog Pre-distortion
282(2)
5.5 Applications
284(7)
5.5.1 Maxim's RF Pre-distortion Technique
284(4)
References
288(3)
6 Transceiver I: Transmitter Architectures
291(36)
6.1 Introduction
291(1)
6.2 Brief Description of Cellular and WLAN Systems
292(2)
6.3 Superheterodyne Transmitter
294(2)
6.4 Direct up-Conversion Transmitter
296(2)
6.5 Transmission Impairments
298(29)
6.5.1 I-Q Gain and Phase Imbalances and DC Offsets
298(12)
6.5.2 LO Leakage
310(3)
6.5.3 VCO Phase-Noise Disturbance
313(6)
6.5.4 Nonlinearity of Power Amplifier
319(5)
References
324(3)
7 Transceiver II: Receiver Architectures
327(78)
7.1 Introduction
327(1)
7.2 Heterodyne Receiver
328(6)
7.2.1 Image Rejection
330(4)
7.3 Low-IF Receiver and Zero-IF Receiver
334(21)
7.3.1 Image Rejection in the Low-IF Receiver
337(16)
7.3.2 Image Rejection in Zero-IF Receiver
353(2)
7.4 Receiver Impairments
355(25)
7.4.1 I--Q Imbalance Compensation
355(6)
7.4.2 DC Offset Cancellation
361(7)
7.4.3 Nonlinear Distortion
368(12)
7.5 Channel Selection Filtering
380(11)
7.5.1 Channel Selection Filtering With Partition
381(6)
7.5.2 Channel Selection Filtering in the Analog Domain
387(4)
7.6 Automatic Gain Control
391(14)
7.6.1 Receiver Sensitivity
392(3)
7.6.2 Receiver Dynamic Range and Total Analog Gain
395(1)
7.6.3 AGC Setting Strategy
396(6)
References
402(3)
8 Applications for RF Transceiver ICs
405(20)
8.1 Introduction
405(1)
8.2 Cellular Communication Transceivers
406(12)
8.2.1 2G GSM Transceivers
407(5)
8.2.2 3G WCDMA Transceivers
412(6)
8.3 WLAN Transceivers
418(7)
8.3.1 Broadcom's WLAN Transceiver
419(2)
8.3.2 Atheros' WLAN 802.11n Transceiver
421(2)
References
423(2)
Tutorial Appendices 425(48)
References 473(2)
Index 475
Wei Gao received a masters degree and Ph.D. in electrical engineering from the Chinese Academy of Radio Technology in Beijing and University of California at Davis in 1987 and in 2001, respectively. He has more than two decades of industrial experiences in the field of wireless digital communications, mainly working at Xian Institute of Radio Technology, Harris Corp, VIA Technologies, and Broadcom Corp. His industrial experiences and research interests are in the areas of single channel per carrier (SCPC) FDMA system design for satellite earth station communications, high speed 128-QAM modem and adaptive algorithm designs for microwave communication systems, system designs and performance evaluations of RF transceivers, including RF predistortion algorithm design for PA linearization, for 2G GSM, 3G WCDMA, 802.11 WLAN, and 4G LTE standards. He has been a member of the IEEE since 1997.