Atjaunināt sīkdatņu piekrišanu

E-grāmata: Engineering of Foundations, Slopes and Retaining Structures

(Purdue University, USA)
  • Formāts: 994 pages
  • Izdošanas datums: 01-Jun-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351818377
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 994 pages
  • Izdošanas datums: 01-Jun-2022
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351818377
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This rigorous textbook covers the construction, analysis and design of shallow and deep foundations, as well as retaining structures and slopes. It incorporates theory with practice, and emphasizes conceptual understanding. Estimation of soil parameters for use in design is given high priority. Illustrations, applications, and hands-on examples which continue across chapters are provided.

It is written for advanced undergraduate and graduate students, and will suit specialist practicing engineers and researchers.

In this new edition:

  • The basic soil mechanics is covered first, fully explaining drained versus undrained loading, phase transformation, development of peak q/p’, and critical state and residual state development with sustained shearing.
  • The LRFD approach to foundations, slopes and retaining structures is overhauled in the light of new research.
  • Bearing capacity of shallow foundations and settlement calculation are replaced.
  • recent research on piles and new design methods is incorporated, with new methods for both axially loaded piles and laterally loaded piles, although current practice is retained.
  • Retaining structures and slopes are improved, with better discussion of limit states and the use of strength reduction in computational stability calculations.
Preface to second edition xxv
Author xxix
1 The world of foundation engineering
1(18)
1.1 The geotechnical engineering industry
1(8)
1.1.1 Geotechnical engineering, foundation engineering, and geotechnical and foundation engineering problems
1(1)
1.1.2 Geotechnical engineering as a profession
2(1)
1.1.3 Education and professional licensing
3(1)
1.1.4 Professional standard of care
3(1)
1.1.5 Professional ethics
4(1)
1.1.6 The players: owner, architect, developer, general contractor, consultant, specialty contractor, and regulatory agencies
5(1)
1.1.7 Business and financial aspects of the geotechnical consulting and specialty contractor industries
6(1)
1.1.7.1 Legal structures of firms
6(1)
1.1.7.2 Metrics of the geotechnical consulting industry
6(2)
1.1.7.3 Metrics of the specialty contractor industry
8(1)
1.1.7.4 Trends in the geotechnical and foundation engineering industry
8(1)
1.2 Foundation engineering tools
9(2)
1.2.1 Soil and rock mechanics: the underlying sciences
9(1)
1.2.2 Codes and standards
9(1)
1.2.3 The role of experience and empiricism
10(1)
1.2.4 The role of publications: where to go for help
10(1)
1.2.5 The role of conferences and short courses
10(1)
1.2.6 The role of computers
11(1)
1.3 Systems of units
11(4)
1.3.1 Units
11(2)
1.3.2 Measurements and calculations
13(2)
1.4 Dimensionless equations and dimensional analysis
15(1)
1.5
Chapter summary
16(1)
1.6 Websites of interest
17(1)
1.6.1 Codes
17(1)
1.6.2 Standards
17(1)
1.6.3 Journals
17(1)
1.6.4 Professional organizations
17(1)
1.7 Problems
18(1)
1.7.1 Conceptual problems
18(1)
1.7.2 Quantitative problems
18(1)
2 Foundation design
19(42)
2.1 The design process
20(4)
2.1.1 What constitutes foundation design
20(1)
2.1.2 The sequence in the solution to a foundation problem
20(1)
2.1.2.1 Determination of the design loads
20(1)
2.1.2.2 Subsurface investigation
21(1)
2.1.2.3 Selection of suitable types of foundation
21(1)
2.1.2.4 Final selection, placement, and proportioning of foundation elements
22(1)
2.1.2.5 Construction
23(1)
2.2 Limit state design and working stress design
24(1)
2.3 Reliability-based design (RBD) and load and resistance factor design (LRFD)
25(4)
2.3.1 The design problem framed as a reliability problem
25(3)
2.3.2 Load and resistance factor design
28(1)
2.4 Load and resistance factor design (LRFD) for ultimate limit states
29(2)
2.5 Tolerable foundation movements
31(20)
2.5.1 Consideration of foundation settlement in design
31(1)
2.5.2 Settlement patterns
31(1)
2.5.3 Crack formation
32(5)
2.5.4 Quantification of tolerable settlements
37(1)
2.5.4.1 Differential settlement and angular distortion
37(3)
2.5.4.2 The Skempton and MacDonald (1956) study
40(2)
2.5.4.3 The Burland and Wroth (1974) study
42(4)
2.5.4.4 Tolerable total settlement of buildings
46(3)
2.5.4.5 Tolerable movements of bridge foundations
49(1)
2.5.4.6 Tolerable foundation movements of other types of structures
49(1)
2.5.4.7 Load factors for settlement computations
50(1)
2.6 Case study: the Leaning Tower of Pisa (Part I)
51(4)
2.6.1 Brief history of the Tower of Pisa
51(1)
2.6.2 Why the settlement?
51(1)
2.6.3 Stabilization of the tower
52(3)
2.7
Chapter summary
55(2)
2.7.1 Main concepts and equations
55(1)
2.7.2 Symbols and notations
56(1)
2.8 Problems
57(4)
2.8.1 Conceptual problems
57(1)
2.8.2 Quantitative problems
57(1)
2.8.3 Design problems
58(1)
References
58(1)
References cited
58(1)
Additional references
59(2)
3 Soils, rocks, and groundwater
61(56)
3.1 Soil and the principle of effective stress
61(4)
3.1.1 What is soil?
61(1)
3.1.2 Particle size
62(3)
3.1.3 Unified Soil Classification System
65(1)
3.1.4 Composition of soil particles
65(1)
3.2 Geology and the genesis of soils and rocks
65(9)
3.2.1 Igneous rocks
65(3)
3.2.2 Sedimentary rocks
68(1)
3.2.3 Metamorphic rocks
69(1)
3.2.4 Soil genesis: residual soils
70(2)
3.2.5 Transported soils
72(2)
3.3 "Classic" soils
74(9)
3.3.1 Silica sand
74(3)
3.3.2 Clays
77(1)
3.3.2.1 Composition of clays
77(4)
3.3.3 Clay-water systems
81(1)
3.3.3.1 Double layer
81(1)
3.3.3.2 Sedimentation of clay in water
82(1)
3.4 "Nonclassic" soils
83(3)
3.4.1 Carbonate sands
84(1)
3.4.2 Marine clays and quick clays
84(1)
3.4.3 Expansive soils
84(1)
3.4.4 Loess
85(1)
3.4.5 Organic soils
85(1)
3.4.6 Mixtures of sand, silt, and clay
85(1)
3.5 Soil indices and phase relationships
86(5)
3.6 Effective stress, shear strength, and stiffness
91(4)
3.6.1 Interaction between soil particles and the effective stress principle
91(1)
3.6.2 The principle of effective stress
92(1)
3.6.3 Groundwater and the water table
93(1)
3.6.4 Unsaturated soils
94(1)
3.7 Groundwater flow
95(11)
3.7.1 Effects of groundwater flow
95(1)
3.7.2 Elevation, kinetic, and pressure heads
95(1)
3.7.3 Darcy's law
96(4)
3.7.4 Two-dimensional water flow through soil
100(5)
3.7.5 Seepage forces
105(1)
3.8 Case study: the Rissa, Norway (1978), quick clay slides
106(1)
3.9
Chapter summary
107(1)
3.9.1 Main concepts and equations
107(1)
3.9.2 Symbols and notations
108(1)
3.10 Websites of interest
108(1)
3.11 Problems
109(8)
3.11.1 Conceptual problems
109(1)
3.11.2 Quantitative problems
110(2)
3.11.3 Design problems
112(1)
References
113(1)
References cited
113(1)
Additional references
114(1)
Relevant ASTM standards
115(2)
4 Stress analysis, strain analysis, and shearing of soils
117(70)
4.1 Stress analysis
117(16)
4.1.1 Elements (points) in a soil mass and boundary-value problems
117(1)
4.1.2 Stress
118(1)
4.1.3 Two-dimensional stress analysis
119(1)
4.1.3.1 Stress state at a point
120(1)
4.1.3.2 Stress analysis: determination of normal and shear stresses in arbitrary plane
121(1)
4.1.3.3 Principal stresses and principal planes
121(1)
4.1.3.4 Mohr's circle
122(1)
4.1.3.5 Pole method
123(3)
4.1.3.6 Solving stress analysis problems
126(2)
4.1.3.7 Total and effective stresses
128(1)
4.1.4 Three-dimensional stress analysis
129(4)
4.2 Strains
133(8)
4.2.1 Definitions of normal and shear strains
133(5)
4.2.2 Mohr's circle of strains
138(1)
4.2.3 Dilatancy angle
139(1)
4.2.4 Strain variables used in critical-state soil mechanics
140(1)
4.3 Plastic failure criteria, deformations, and slip surfaces
141(7)
4.3.1 Mohr-Coulomb strength criterion
141(4)
4.3.2 Slip surfaces
145(2)
4.3.3 Slip surface direction
147(1)
4.3.4 The Hoek-Brown failure criterion for rocks
148(1)
4.4 At-rest and active and passive Rankine states
148(7)
4.4.1 At-rest state
148(2)
4.4.2 Rankine states
150(1)
4.4.2.1 Level ground
150(3)
4.4.2.2 Sloping ground
153(2)
4.5 Main types of soil laboratory tests for strength and stiffness determination
155(6)
4.5.1 Role of stiffness and shear strength determination
155(1)
4.5.2 Stress (loading) paths
156(1)
4.5.3 Loading paths and main laboratory tests
156(5)
4.6 Stresses resulting from the most common boundary-value problems
161(13)
4.6.1 Elastic stress-strain relationship and elastic boundary-value problems
161(1)
4.6.2 Vertical point load on the boundary of a semi-infinite, elastic soil mass (Boussinesq's problem)
162(1)
4.6.3 Vertical point load within a semi-infinite, elastic soil mass (Kelvin's Problem)
163(1)
4.6.4 Uniform pressure distributed over a circular area on the boundary of a semi-infinite, elastic soil mass
164(1)
4.6.5 Uniform pressure distributed over a rectangular area on the boundary of a semi-infinite, elastic soil mass
165(3)
4.6.6 Vertical line load on the boundary of a semi-infinite, elastic soil mass
168(1)
4.6.7 Uniform pressure distributed over an infinitely long strip on the boundary of a semi-infinite, elastic soil mass
169(1)
4.6.8 Rigid strip and rigid cylinder on the boundary of a semi-infinite, elastic soil mass
170(1)
4.6.9 Approximate stress distribution based on 2:1 vertical stress dissipation
170(2)
4.6.10 Saint-Venant's principle
172(2)
4.7 Total and effective stress analyses
174(1)
4.8
Chapter summary
175(4)
4.8.1 Main concepts and equations
175(2)
4.8.2 Symbols and notations
177(2)
4.9 Problems
179(8)
4.9.1 Conceptual problems
179(1)
4.9.2 Quantitative problems
180(4)
References
184(1)
References cited
184(1)
Additional references
185(2)
5 Shear strength and stiffness of sands
187(46)
5.1 Stress-strain behavior, volume change, and shearing of sands
187(7)
5.1.1 Stress ratio, dilatancy, and the critical state
187(4)
5.1.2 Friction and dilatancy
191(3)
5.2 Critical state
194(6)
5.2.1 The critical-state line and the state parameter
194(1)
5.2.2 Shearing paths: all paths lead to the critical state
195(5)
5.2.3 Critical-state friction angle
200(1)
5.3 Evaluation of the shear strength of sand
200(2)
5.4 Sources of drained shear strength
202(7)
5.4.1 Variables affecting the shear strength of sand
202(1)
5.4.2 Soil State variables
203(1)
5.4.2.1 Relative density or void ratio
203(1)
5.4.2.2 Effective confining stress
203(1)
5.4.2.3 Soil fabric
204(1)
5.4.2.4 Cementation
205(1)
5.4.2.5 Aging
205(1)
5.4.3 Intrinsic factors: factors related to the nature and characteristics of the soil particles
205(1)
5.4.3.1 Mineral composition
205(1)
5.4.3.2 Particle morphology
206(1)
5.4.3.3 Particle size and soil gradation (grain size distribution)
206(1)
5.4.3.4 Presence of water
207(1)
5.4.4 Loading path
207(2)
5.5 Representation of drained shear strength of sands
209(9)
5.5.1 The Bolton correlation for the friction angle
209(7)
5.5.2 Parameters c and <p from curve fitting
216(2)
5.5.3 Which friction angle to use in design?
218(1)
5.6 Undrained shear strength
218(2)
5.7 Small-strain stiffness
220(1)
5.8
Chapter summary
221(3)
5.8.1 Main concepts
221(2)
5.8.2 Symbols and notations
223(1)
5.9 Problems
224(9)
5.9.1 Conceptual problems
224(1)
5.9.2 Quantitative problems
224(4)
5.9.3 Design problems
228(2)
References
230(1)
References cited
230(2)
Additional references
232(1)
Relevant ASTM Standards
232(1)
6 Consolidation, shear strength, and stiffness of clays
233(58)
6.1 Compression and consolidation
233(21)
6.1.1 Excess pore pressures
233(1)
6.1.2 Soil compression
234(10)
6.1.3 Consolidation equation
244(4)
6.1.4 Solution of the consolidation equation and the degree of consolidation
248(2)
6.1.5 Estimation of the coefficient of consolidation
250(2)
6.1.6 Secondary compression
252(1)
6.1.7 Isotropic compression
253(1)
6.1.8 Large-strain consolidation analysis
254(1)
6.2 Drained shear strength of saturated clays
254(3)
6.3 Undrained shear strength of clays
257(8)
6.3.1 Consolidated undrained triaxial compression tests
257(6)
6.3.2 Unconsolidated undrained tests
263(1)
6.3.3 Assessment of total stress analysis
264(1)
6.4 Critical-state, residual, and design shear strengths
265(6)
6.4.1 Critical-state plots
265(2)
6.4.2 Design shear strength
267(1)
6.4.3 Correlations for undrained shear strength
268(1)
6.4.4 Residual shear strength
269(2)
6.5 Small-strain stiffness
271(1)
6.6 Case study: Historic controversies surrounding the diffusion and consolidation equations 2
272(2)
6.7 Case study: The Leaning Tower of Pisa (Part II)
274(1)
6.8
Chapter summary
275(5)
6.8.1 Main concepts and equations
275(4)
6.8.2 Notations and symbols
279(1)
6.9 Problems
280(11)
6.9.1 Conceptual problems
280(1)
6.9.2 Quantitative problems
280(5)
6.9.3 Design problems
285(2)
References
287(1)
References cited
287(2)
Additional references
289(1)
Relevant ASTM standards
289(2)
7 Site exploration
291(70)
7.1 General approach to site investigation
291(2)
7.2 Soil borings
293(3)
7.3 Standard penetration test
296(13)
7.3.1 Procedure
296(5)
7.3.2 Blow count corrections
301(3)
7.3.3 Interpretation of SPT results
304(1)
7.3.3.1 Sand
304(3)
7.3.3.2 Clay
307(2)
7.4 Undisturbed soil sampling
309(2)
7.5 Rock sampling
311(5)
7.5.1 Occurrence of rock
311(1)
7.5.2 Sampling operations
311(1)
7.5.3 Information from coring and rock testing
312(1)
7.5.4 Rock mass strength
313(3)
7.6 Cone penetration test: Cone penetrometer, types of rig, and quantities measured
316(8)
7.6.1 Cone penetrometer and CPT rigs
316(3)
7.6.2 Measurements made during a CPT
319(1)
7.6.3 Soil classification based on CPT measurements
320(2)
7.6.4 Measurement of pore pressures and shear wave velocity
322(2)
7.6.5 The CPT in a site investigation program
324(1)
7.7 Interpretation of CPT results
324(15)
7.7.1 Sands
324(1)
7.7.1.1 Relative density and friction angle
324(7)
7.7.1.2 Shear modulus
331(1)
7.7.2 Clays
332(1)
7.7.1.3 Undrained shear strength
332(2)
7.7.1.4 Compressibility and rate of consolidation
334(4)
7.7.3 Correlation between qc and the SPT blow count
338(1)
7.7.4 Cemented sands
338(1)
7.8 Other in situ tests
339(4)
7.8.1 Vane shear test
339(3)
7.8.2 Pressuremeter test
342(1)
7.9 Geophysical exploration
343(1)
7.10 Subsurface exploration report and geotechnical report
343(1)
7.11
Chapter summary
344(3)
7.11.1 Main concepts
344(2)
7.11.2 Notations and symbols
346(1)
7.12 Problems
347(14)
7.12.1 Conceptual problems
347(1)
7.12.2 Quantitative problems
347(1)
7.12.3 Design problems
348(8)
References
356(1)
References cited
356(3)
Additional references
359(1)
Relevant ASTM standards
359(2)
8 Shallow foundations in soils: types of shallow foundations and construction techniques
361(16)
8.1 Types of shallow foundations and their applicability
361(6)
8.1.1 Applicability of shallow foundations
361(1)
8.1.2 Types of shallow foundations
362(5)
8.2 Construction of shallow foundations
367(7)
8.2.1 Basic construction methods
367(4)
8.2.2 Basic construction specifications and items for inspection
371(2)
8.2.3 Construction inspection
373(1)
8.2.4 Dewatering
374(1)
8.3
Chapter summary
374(1)
8.4 Problems
375(2)
8.4.1 Conceptual problems
375(1)
8.4.2 Design problems
375(1)
Reference
375(2)
9 Shallow foundation settlement
377(60)
9.1 Types of settlement
377(2)
9.2 Influence of foundation stiffness
379(2)
9.3 Approaches to settlement computation
381(1)
9.4 Settlement equations from elasticity theory
381(1)
9.4.1 General form of the equations
381(1)
9.5 Settlement of flexible foundations
381(6)
9.5.1 Point load
381(2)
9.5.2 Uniform circular load
383(2)
9.5.3 Rectangular load
385(2)
9.5.4 Settlement of rigid foundations
387(1)
9.6 Settlement of shallow foundations on sand
387(16)
9.6.1 SPT-based methods
387(1)
9.6.1.1 Meyerhof's method
387(1)
9.6.1.2 Peck and Bazaraa's method
388(1)
9.6.1.3 Burland and Burbidge's method
389(5)
9.6.2 CPT-based methods
394(1)
9.6.2.1 Schmertmann's method
394(3)
9.6.2.2 Lee et al.'s method
397(6)
9.7 Settlement of shallow foundations on clay
403(11)
9.7.1 Immediate settlement
403(1)
9.7.1.1 Christian and Carrier's method
403(1)
9.7.1.2 Foye et al.'s method
404(6)
9.7.2 Consolidation settlement
410(4)
9.8 Case study: The Leaning Tower of Pisa (Part III) and the leaning buildings of Santos
414(6)
9.9
Chapter summary
420(5)
9.9.1 Main concepts and equations
420(1)
9.9.2 Equations for the calculation of settlement of shallow foundations in sand using the SPT
420(1)
9.9.3 Equations for the calculation of settlement of shallow foundations in sand using the CPT
421(2)
9.9.4 Equations for the calculation of immediate settlement of shallow foundations in clay
423(1)
9.9.5 Equations for the calculation of consolidation settlement of shallow foundations in clay
423(1)
9.9.6 Symbols and notations
424(1)
9.10 Problems
425(12)
9.10.1 Conceptual problems
425(1)
9.10.2 Quantitative problems
426(1)
9.10.3 Design problems
427(7)
References
434(1)
References cited
434(1)
Additional references
435(2)
10 Shallow foundations: limit bearing capacity
437(72)
10.1 The bearing capacity equation for strip footings
438(13)
10.1.1 Bearing capacity failure and the bearing capacity equation
438(4)
10.1.2 Derivation of bearing capacity equation and bearing capacity factors
442(1)
10.1.2.1 Fractional, weightless soil: derivation of an equation for Nq
442(2)
10.1.2.2 Cohesive-frictional, weightless soil
444(1)
10.1.2.3 Soil with self-weight: expressions for Ny for associative materials
444(2)
10.1.3 The hearing capacity equation for materials following a nonassociated flow rule
446(1)
10.1.4 Using the bearing capacity equation
447(4)
10.2 The bearing capacity of saturated clays
451(15)
10.2.1 The bearing capacity equation for clays
451(1)
10.2.2 Shape, depth, and load inclination factors for footings in clay
452(5)
10.2.3 Bearing capacity of footings in clay with strength increasing with depth
457(1)
10.2.3.1 Surface, strip footings
457(3)
10.2.3.2 Footings with finite dimensions embedded in soil with increasing strength with depth
460(6)
10.3 Bearing capacity of footings in sand
466(11)
10.3.1 The bearing capacity equation for sands
466(3)
10.3.2 Estimation of cp value to use in bearing capacity equation
469(1)
10.3.3 Estimation of bearing capacity based on relative density
470(1)
10.3.4 Some perspective on the depth factor
471(1)
10.3.5 Some perspective on the shape factor
471(1)
10.3.6 Load, base, and ground inclinations
472(5)
10.4 General shear, local shear, and punching bearing capacity failure modes
477(2)
10.5 Footings in sand: effects of groundwater table elevation
479(6)
10.6 Foundations subjected to load eccentricity
485(8)
10.6.1 Idealized distributions of pressure at foundation base
485(3)
10.6.2 The kern
488(2)
10.6.3 Eccentricity in one direction
490(1)
10.6.4 Calculation of limit bearing capacity for eccentric loads
490(3)
10.7 Calculation of bearing capacity using curve-fit c and <p parameters
493(1)
10.8 Limit bearing capacity of shallow foundations in rocks
494(2)
10.9
Chapter summary
496(4)
10.9.1 Main concepts and equations
496(1)
10.9.1.1 Bearing capacity equation
496(1)
10.9.1.2 Calculation of bearing capacity in clays
496(1)
10.9.1.3 Calculation of bearing capacity in sands
497(1)
10.9.1.4 Load eccentricity
498(1)
10.9.2 Notations and Symbols
498(2)
10.10 Problems
500(9)
10.10.1 Conceptual problems
500(1)
10.10.2 Quantitative problems
501(2)
10.10.3 Design problems
503(2)
References
505(1)
References cited
505(1)
Additional references
506(3)
11 Shallow foundation design
509(34)
11.1 The shallow foundation design process
509(3)
11.1.1 The design problem
509(1)
11.1.2 Limit states design of shallow foundations
510(2)
11.2 Limit state IA-1 check
512(15)
11.2.1 Working stress design of shallow foundations
512(7)
11.2.2 Load and resistance factor design of shallow foundations
519(1)
11.2.2.1 The fundamental design inequality
519(1)
11.2.2.2 Nominal resistances and resistance factors
520(2)
11.2.3 Relationship between resistance factors, load factors, and the factor of safety
522(5)
11.3 Settlement check
527(2)
11.4 Structural considerations
529(4)
11.4.1 Interaction with the structural engineer
529(1)
11.4.2 Location, configuration, and flexibility of the structure
529(1)
11.4.3 Sizing of rectangular and trapezoidal combined footings
530(1)
11.4.4 Sizing of strap footings
531(1)
11.4.5 Analysis and structural design of mat foundations
532(1)
11.5 Case study: The Leaning Tower of Pisa (Part IV)
533(3)
11.5.1 References for "Case History: The Leaning Tower of Pisa" - Parts I-IV
535(1)
11.6
Chapter summary
536(3)
11.6.1 Foundation design
536(1)
11.6.2 Bearing capacity check using working stress design
536(1)
11.6.3 Bearing capacity check using LRFD
537(1)
11.6.4 Settlement check
538(1)
11.6.5 Symbols and notations
538(1)
11.7 Problems
539(4)
11.7.1 Conceptual problems
539(1)
11.7.2 Quantitative problems
539(1)
11.7.3 Design problems
540(2)
References
542(1)
References cited
542(1)
Additional reference
542(1)
12 Types of piles and their installation
543(36)
12.1 Pile foundations: what are they and when are they required?
543(1)
12.2 Classifications of pile foundations
543(10)
12.2.1 Classification based on the method of fabrication and installation process
543(3)
12.2.2 Classification based on pile material
546(1)
12.2.2.1 Timber piles
546(1)
12.2.2.2 Steel piles
547(2)
12.2.2.3 Concrete piles
549(3)
12.2.2.4 Precast, prestressed concrete piles
552(1)
12.2.3 Classification based on pile loading mode
552(1)
12.3 Nondisplacement piles
553(9)
12.3.1 Drilled shafts (bored piles)
553(1)
12.3.1.1 Basic idea
553(1)
12.3.1.2 Equipment
553(2)
12.3.1.3 Procedures
555(4)
12.3.2 Barrette piles
559(1)
12.3.3 Strauss piles
559(3)
12.4 Auger piles
562(5)
12.4.1 Types of auger piles
562(1)
12.4.2 Continuous flight auger piles (augercast piles)
562(1)
12.4.2.1 Equipment
562(1)
12.4.2.2 Procedures
563(1)
12.4.3 Prepakt piles
564(1)
12.4.4 Drilled displacement piles
564(1)
12.4.4.1 Common features of drilled displacement piles
564(1)
12.4.4.2 Omega pile
565(1)
12.4.4.3 Atlas pile
565(1)
12.4.4.4 APGDpile
566(1)
12.5 Displacement piles
567(6)
12.5.1 Installation methods
567(1)
12.5.2 Equipment
568(1)
12.5.2.1 Pile hammers
568(2)
12.5.2.2 Pile driving leads (or leaders)
570(2)
12.5.2.3 Driving system components
572(1)
12.5.3 Pile driving
572(1)
12.5.4 Franki piles (Pressure-injected footings)
573(1)
12.5.5 Raymond piles
573(1)
12.6 Piling in rock
573(3)
12.6.1 Rock sockets
573(1)
12.6.2 Micropiles
574(2)
12.7
Chapter summary
576(1)
12.8 Websites of interest
577(1)
12.9 Problems
577(2)
12.9.1 Conceptual problems
577(1)
References
578(1)
References cited
578(1)
Additional references
578(1)
Relevant ASTM standards
578(1)
13 Analysis and design of single piles
579(154)
13.1 Response of single piles to axial load
579(3)
13.2 Design of single, axially loaded piles
582(3)
13.2.1 Design process
582(1)
13.2.2 Limit states
583(1)
13.2.3 Design ultimate limit state
584(1)
13.3 Ultimate load
585(8)
13.3.1 Ultimate load: What is it?
585(1)
13.3.2 Ultimate load criteria
586(1)
13.3.2.1 Chin's criterion
586(1)
13.3.2.2 Van der Veen's criterion
587(1)
13.3.2.3 Ultimate load based on 10% relative settlement
588(1)
13.3.2.4 Davisson's criterion
589(1)
13.3.2.5 De Beer's criterion
590(1)
13.3.2.6 Which criterion to use?
590(3)
13.4 Calculation of pile resistance
593(15)
13.4.1 General framework
593(1)
13.4.2 Factor of safety and allowable load
594(1)
13.4.3 "Floating piles" and "end-bearing piles"
594(2)
13.4.4 Calculation of pile resistance from CPT or SPT results
596(3)
13.4.5 The sources of ultimate shaft and base resistance in piles
599(1)
13.4.5.1 Shaft resistance
599(1)
13.4.5.2 Base resistance
599(1)
13.4.6 Treatment of sands, silts, and clays
600(1)
13.4.7 Design methods
600(1)
13.4.8 Special considerations for drilled shafts
600(1)
13.4.9 Special considerations for belled drilled shafts
601(1)
13.4.10 Special considerations for steel pipe piles
602(3)
13.4.11 Special considerations for steel tapered piles
605(1)
13.4.12 Special considerations for steel H-section piles
606(2)
13.4.13 Special considerations for Franki piles ("pressure-injected footings")
608(1)
13.4.14 Special considerations for CFA piles, partial-displacement piles, and micropiles
608(1)
13.5 Calculation of the ultimate resistance of nondisplacement piles
608(10)
13.5.1 The relationship of pile installation to pile load response
608(1)
13.5.2 Nondisplacement piles in sandy soil
609(1)
13.5.2.1 Shaft resistance
609(1)
13.5.2.2 Base resistance
610(1)
13.5.3 Nondisplacement piles in clayey soil
611(1)
13.5.3.1 Shaft resistance
611(1)
13.5.3.2 Base resistance
612(1)
13.5.4 Piles in tension
612(1)
13.5.5 Examples of calculations of the ultimate resistance of nondisplacement piles
613(5)
13.6 Calculation of the ultimate resistance of displacement piles
618(34)
13.6.1 The relationship of pile installation to pile load response
618(1)
13.6.2 Unit shaft resistance degradation
619(1)
13.6.3 Variation of driven pile resistance with time
619(1)
13.6.4 Displacement piles in sandy soil
620(5)
13.6.5 Displacement piles in clayey soil
625(5)
13.6.6 Piles in tension
630(1)
13.6.7 Examples of calculations of the ultimate resistance of displacement piles
631(12)
13.6.8 Examples of calculations of the ultimate resistance of open-ended pipe piles and H-piles
643(9)
13.7 Other SPT and CPT design correlations
652(7)
13.7.1 Form of the correlations
652(1)
13.7.2 Sands
652(1)
13.7.2.1 Base resistance
652(1)
13.7.2.2 Shaft resistance
652(3)
13.7.3 Clays
655(1)
13.7.3.1 Base resistance
655(1)
13.7.3.2 Shaft resistance
656(1)
13.7.4 Silts
656(3)
13.8 Load and resistance factor design procedure for single piles
659(1)
13.9 Calculation of settlement of piles subjected to axial loadings
660(14)
13.9.1 Nature and applicability of the analysis
660(1)
13.9.2 Basic differential equation of pile compression
661(3)
13.9.3 Pile compression in homogeneous, elastic soil
664(2)
13.9.4 Limiting cases: Ideal floating, infinitely long, and end-bearing piles
666(2)
13.9.5 Application to real problems
668(1)
13.9.5.1 Floating piles or piles with limited base resistance
668(1)
13.9.5.2 End-bearing piles
669(1)
13.9.5.3 Piles with noncircular cross sections
670(2)
13.9.6 Negative skin friction
672(2)
13.10 Piling in rock
674(6)
13.10.1 Rock sockets and micropiles in rock
674(1)
13.10.2 Estimation of base resistance
674(2)
13.10.3 Estimation of shaft resistance
676(1)
13.10.4 Estimation of structural capacity
676(4)
13.11 Laterally loaded piles
680(25)
13.11.1 The design problem
680(1)
13.11.2 Pile lateral load response
681(5)
13.11.3 The p-y method
686(2)
13.11.4 Limit unit lateral resistance p
688(1)
13.11.5 Long piles
689(1)
13.11.6 Limit resistance of short piles
690(5)
13.11.7 p-y Curves
695(2)
13.11.8 Use of computer programs
697(5)
13.11.9 Monopiles
702(3)
13.12 Static load tests
705(4)
13.12.1 Definition and classification
705(1)
13.12.2 Type of loading and rate of load application
706(1)
13.12.3 Source of reaction
707(1)
13.12.4 Measurements and instrumentation
708(1)
13.12.5 Interpretation of pile load tests
709(1)
13.13
Chapter summary
709(3)
13.13.1 Symbols and notations
711(1)
13.14 Problems
712(21)
13.14.1 Conceptual problems
712(1)
13.14.2 Quantitative problems
713(3)
13.14.3 Design problems
716(7)
References
723(1)
References cited
723(7)
Additional references
730(2)
Relevant ASTM standards
732(1)
14 Pile driving analysis and quality control of piling operations
733(58)
14.1 Applications of pile dynamics
733(1)
14.2 Wave mechanics
734(10)
14.2.1 Wave equation
734(2)
14.2.2 Relationship between force and particle velocity
736(2)
14.2.3 Boundary conditions
738(1)
14.2.3.1 Types of boundary conditions
738(1)
14.2.3.2 Wave approaching free end
738(1)
14.2.3.3 Wave approaching fixed end
739(1)
14.2.3.4 Prescribed force at a point along the pile
740(1)
14.2.3.5 Prescribed velocity at pile top
741(1)
14.2.4 Modeling of soil resistances
741(1)
14.2.4.1 Decomposition in static and dynamic components
741(1)
14.2.4.2 Modeling of static resistance
742(1)
14.2.4.3 Modeling of dynamic resistance
743(1)
14.3 Analysis of dynamic pile load tests
744(9)
14.3.1 The Case method
744(5)
14.3.2 Signal matching
749(1)
14.3.3 Pile integrity testing
750(3)
14.4 Wave equation analysis
753(23)
14.4.1 Wave equation analysis and its applications
753(2)
14.4.2 Pile and soil model
755(1)
14.4.2.1 Overview
755(1)
14.4.2.2 Smith model
756(4)
14.4.2.3 Advanced model
760(3)
14.4.3 Modeling of driving system
763(1)
14.4.4 Analysis
764(2)
14.4.5 Results of the analysis
766(10)
14.4.6 Importance of choice of soil resistance models
776(1)
14.5 Pile driving formulas
776(5)
14.5.1 Traditional formulas
776(2)
14.5.2 Modern formulas
778(3)
14.6
Chapter summary
781(3)
14.6.1 Symbols and notations
783(1)
14.7 Problems
784(7)
14.7.1 Conceptual problems
784(1)
14.7.2 Quantitative problems
785(2)
References
787(1)
References cited
787(1)
Additional references
788(1)
Relevant ASTM standards
789(2)
15 Pile groups and piled rafts
791(28)
15.1 Use of pile groups, pile caps, and piled rafts
791(2)
15.2 Vertically loaded pile groups
793(10)
15.2.1 Definition
793(2)
15.2.2 Ultimate bearing capacity
795(2)
15.2.3 Pile group settlement
797(6)
15.2.4 Impact of soil constitutive model used in the analyses
803(1)
15.3 Piled mats
803(3)
15.3.1 The concept of piled mat foundations
803(1)
15.3.2 Design
803(3)
15.4 Laterally loaded pile groups
806(5)
15.4.1 Design approaches
806(1)
15.4.2 Simplified design approach
806(1)
15.4.2.1 Pile head fixity
806(1)
15.4.2.2 Simplified approach using the p-y method
807(4)
15.5
Chapter summary
811(3)
15.5.1 Symbols and notations
813(1)
15.6 Problems
814(5)
15.6.1 Conceptual problems
814(1)
15.6.2 Quantitative problems
814(1)
15.6.3 Design problems
815(1)
References
816(1)
References cited
816(1)
Additional references
817(2)
16 Retaining structures
819(66)
16.1 Purpose and types of retaining structures
819(7)
16.1.1 The function of retaining structures
819(2)
16.1.2 Types of retaining structures
821(5)
16.2 Calculation of earth pressures
826(12)
16.2.1 Mobilization of active and passive pressures
826(1)
16.2.2 Calculation of active earth pressures using the formulation of Rankine
827(1)
16.2.2.1 Active pressures for level soil masses
827(3)
16.2.3 Calculation of earth pressures using the formulation of Coulomb
830(3)
16.2.4 Calculation of earth pressures using the formulation of Lancellotta
833(1)
16.2.5 Calculation of earth pressures accounting for soil arching effects using the formulation ofPaik and Salgado (2003)
833(4)
16.2.6 Choice of friction angle for use in calculations of active and passive pressures
837(1)
16.3 Design of externally stabilized walls
838(18)
16.3.1 Gravity walls
838(3)
16.3.2 Cantilever (embedded) walls
841(5)
16.3.3 Tieback walls
846(1)
16.3.3.1 The basic design problem
846(1)
16.3.3.2 Analysis based on free-earth support assumption
847(2)
16.3.3.3 Design of tieback
849(5)
16.3.4 Braced excavations
854(2)
16.4 Design of mechanically stabilized earth (MSE) walls
856(17)
16.4.1 Materials
856(2)
16.4.2 General design considerations
858(4)
16.4.3 External stability design checks using WSD and LRFD
862(1)
16.4.3.1 Sliding limit state
862(1)
16.4.3.2 Overturning limit state
863(1)
16.4.3.3 Bearing capacity limit state
863(1)
16.4.4 Internal stability design checks using WSD and LRFD
863(1)
16.4.4.1 Reinforcement rupture limit state
863(1)
16.4.4.2 Reinforcement pullout limit state
864(9)
16.5 Soil nailing
873(3)
16.6
Chapter summary
876(3)
16.6.1 Symbols and notations
877(2)
16.7 Problems
879(6)
16.7.1 Conceptual problems
879(1)
16.7.2 Quantitative problems
880(1)
16.7.3 Design problems
881(1)
References
882(1)
References cited
882(1)
Additional references
883(1)
Relevant ASTM standards
884(1)
17 Soil slopes
885(50)
17.1 The role of slope stability analysis in foundation engineering projects
885(9)
17.1.1 Engineering analysis of soil slopes
885(1)
17.1.2 Stability and deformation analyses
886(2)
17.1.3 Effective versus total stress analysis
888(1)
17.1.4 Typical slope problems
889(1)
17.1.4.1 Sandy/silty/gravelly fills built on firm soil or rock
889(1)
17.1.4.2 Clayey fills built on firm soil or rock
890(1)
17.1.4.3 Fills built on soft subsoil
890(1)
17.1.4.4 Excavation slopes
890(1)
17.1.4.5 Natural slopes
891(1)
17.1.4.6 "Special" cases
891(1)
17.1.4.7 Need for computations
892(1)
17.1.5 The basics of limit equilibrium analysis
892(2)
17.2 Some basic limit equilibrium methods
894(9)
17.2.1 Wedge analysis
894(3)
17.2.2 The infinite slope method
897(4)
17.2.3 The Swedish circle method
901(2)
17.3 The slice methods of limit equilibrium analysis of slopes
903(14)
17.3.1 General formulation
903(3)
17.3.2 Ordinary method of slices
906(3)
17.3.3 Bishop's simplified method
909(1)
17.3.4 Janbu's method
910(1)
17.3.5 Spencer's method
911(1)
17.3.6 Other methods
912(1)
17.3.7 Comparison of different methods of stability analysis
913(1)
17.3.8 Acceptable values of factor of safety and resistance factors for stability analysis
914(1)
17.3.9 Computational issues associated with limit equilibrium slope stability analysis
915(1)
17.3.9.1 Groundwater modeling
915(2)
17.3.10 Search for the critical slip surface
917(1)
17.4 Slope stability analysis programs: An example
917(4)
17.5 Advanced methods of analysis: Limit analysis
921(6)
17.5.1 Basic concepts of limit analysis
921(3)
17.5.2 Finite element modeling for limit analysis of complex soil slopes
924(1)
17.5.3 Optimization of lower and upper bound solutions
925(1)
17.5.4 Factor of safety and other results
925(2)
17.6 Case study: Building collapse caused by landslide
927(1)
17.7
Chapter summary
927(2)
17.7.1 Symbols and notations
928(1)
17.8 Problems
929(6)
17.8.1 Conceptual problems
929(1)
17.8.2 Quantitative problems
930(1)
17.8.3 Design problems
931(1)
References
931(1)
References cited
931(2)
Additional references
933(2)
Appendix A Unit conversions 935(4)
Appendix B Useful relationships and typical values of various quantities 939(4)
Appendix C Measurement of hydraulic conductivity in the laboratory using the falling-head permeameter 943(2)
Appendix D Determination of preconsolidation pressure, compression and recompression indices, and coefficient of consolidation from consolidation test data 945(4)
Appendix E Stress rotation analysis 949(4)
Index 953
Rodrigo Salgado is the Pankow Professor in Civil Engineering at Purdue University, Editor in Chief of the ASCE Journal of Geotechnical and Geoenvironmental Engineering, and author of over 150 journal publications, 100 conference publications, and 40 reports. He has supervised 30 Ph.D. students and was the recipient of prestigious awards, including the Sloan Best Paper Award, the ICE Geotechnical Research Medal, the Prakash Research Award, the ASCE Huber Research Prize, the ASCE Arthur Casagrande Award, and the IACMAG Excellent Contributions Award.