Atjaunināt sīkdatņu piekrišanu

E-grāmata: Engineering Optics With MatlabA(R) (Second Edition)

(Virginia Tech, Usa), (Sejong Univ, South Korea)
  • Formāts: 324 pages
  • Izdošanas datums: 10-Oct-2017
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813100039
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 36,07 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 324 pages
  • Izdošanas datums: 10-Oct-2017
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789813100039
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This invaluable second edition provides more in-depth discussions and examples in various chapters. Based largely on the authors' own in-class lectures as well as researchers in the area, the comprehensive textbook serves two purposes. The first introduces some traditional topics such as matrix formalism of geometrical optics, wave propagation and diffraction, and some fundamental background on Fourier optics. The second presents the essentials of acousto-optics and electro-optics, and provides the students with experience in modeling the theory and applications using a commonly used software tool MATLAB®.
Dedication v
Preface vii
About the Authors ix
1 Geometrical Optics
1(58)
1.1 Fermat's Principle
2(3)
1.2 Reflection and Refraction
5(3)
1.3 Ray Propagation in an Inhomogeneous Medium: Ray Equation
8(16)
1.4 Matrix Methods in Paraxial Optics
24(19)
1.4.1 The ray transfer matrix
25(8)
1.4.2 Illustrative examples
33(5)
1.4.3 Cardinal points of an optical system
38(5)
1.5 Reflection Matrix and Optical Resonators
43(6)
1.6 Ray Optics using MATLAB
49(10)
2 Wave Propagation and Wave Optics
59(83)
2.1 Maxwell's Equations: A Review
59(4)
2.2 Linear Wave Propagation
63(27)
2.2.1 Traveling-wave solutions
63(5)
2.2.2 Maxwell's equations in phasor domain: Intrinsic impedance, the Poynting vector, and polarization
68(6)
2.2.3 Electromagnetic waves at a boundary and Fresnel's equations
74(16)
2.3 Wave Optics
90(35)
2.3.1 Fourier transform and convolution
90(7)
2.3.2 Spatial frequency transfer function and spatial impulse response of propagation
97(4)
2.3.3 Examples of Fresnel diffraction
101(1)
2.3.4 Fraunhofer diffraction
102(3)
2.3.5 Fourier transforming property of an ideal lens
105(8)
2.3.6 Resonators and Gaussian beams
113(12)
2.4 Gaussian Beam Optics and MATLAB Examples
125(17)
2.4.1 q-transformation of Gaussian beams
127(3)
2.4.2 MATLAB example: Propagation of a Gaussian beam
130(12)
3 Beam Propagation in Inhomogeneous Media and in Kerr Media
142(46)
3.1 Wave Propagation in a Linear Inhomogeneous Medium
142(1)
3.2 Optical Propagation in Square-Law Media
143(8)
3.3 The Paraxial Wave Equation
151(2)
3.4 The Split-Step Beam Propagation Method
153(4)
3.5 MATLAB Examples Using the Split-Step Beam Propagation Method
157(11)
3.6 Beam Propagation in Nonlinear Media: The Kerr Media
168(20)
3.6.1 Spatial soliton
169(4)
3.6.2 Self-focusing and self-defocusing
173(15)
4 Acousto-Optics
188(66)
4.1 Qualitative Description and Heuristic Background
188(10)
4.2 The Acousto-Optic Effect: General Formalism
198(3)
4.3 Raman-Nath Equations
201(3)
4.4 Contemporary Approach
204(2)
4.5 Raman-Nath Regime
206(2)
4.6 Bragg Regime
208(7)
4.7 Numerical Examples
215(7)
4.8 Modern Applications of the Acousto-Optic Effect
222(32)
4.8.1 Intensity modulation of a laser beam
222(3)
4.8.2 Light beam deflector and spectrum analyzer
225(1)
4.8.3 Demodulation of frequency-modulated (FM) signals
226(2)
4.8.4 Bistable switching
228(6)
4.8.5 Acousto-optic spatial filtering
234(8)
4.8.6 Acousto-optic heterodyning
242(12)
5 Electro-Optics
254(47)
5.1 The Dielectric Tensor
254(6)
5.2 Plane-Wave Propagation in Uniaxial Crystals: Birefringence
260(8)
5.3 Applications of Birefringence: Wave Plates
268(3)
5.4 The Index Ellipsoid
271(5)
5.5 Electro-Optic Effect in Uniaxial Crystals
276(5)
5.6 Some Applications of the Electro-Optic Effect
281(20)
5.6.1 Intensity modulation
281(11)
5.6.2 Phase modulation
292(2)
5.6.3 Frequency shifting
294(7)
Index 301