Atjaunināt sīkdatņu piekrišanu

Enhancing Surrogate-Based Optimization Through Parallelization 2023 ed. [Hardback]

  • Formāts: Hardback, 115 pages, height x width: 235x155 mm, weight: 389 g, 26 Illustrations, color; 7 Illustrations, black and white; X, 115 p. 33 illus., 26 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1099
  • Izdošanas datums: 30-May-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031306082
  • ISBN-13: 9783031306082
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 154,01 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 181,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 115 pages, height x width: 235x155 mm, weight: 389 g, 26 Illustrations, color; 7 Illustrations, black and white; X, 115 p. 33 illus., 26 illus. in color., 1 Hardback
  • Sērija : Studies in Computational Intelligence 1099
  • Izdošanas datums: 30-May-2023
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3031306082
  • ISBN-13: 9783031306082
Citas grāmatas par šo tēmu:
This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.

Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.

Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently.
Introduction.- Background.- Methods/Contributions.- Application.- Final Evaluation.