Atjaunināt sīkdatņu piekrišanu

E-grāmata: Entropy Analysis in Thermal Engineering Systems

(Central Michigan University, USA)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 23-Oct-2019
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128191699
  • Formāts - EPUB+DRM
  • Cena: 181,46 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 23-Oct-2019
  • Izdevniecība: Academic Press Inc
  • Valoda: eng
  • ISBN-13: 9780128191699

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Entropy Analysis in Thermal Engineering Systems is a thorough reference on the latest formulation to highlight the limitations of traditional entropy analysis. Yousef Haseli draws on his own experience in thermal engineering as well as the knowledge of other global experts to explain the definitions and concepts of entropy and the significance of the second law of thermodynamics. The design and operation of systems is also described, as well as an analysis of the relationship between entropy change and exergy destruction in heat conversion and transfer. The book investigates the performance of thermal systems and the applications of the entropy analysis in thermal engineering systems to allow the reader to make clearer design decisions to maximize the energy potential of a thermal system.

With a focus on clarifying the inaccurate teachings of second-law issues, this book is a valuable resource for those working and researching in thermal engineering, particularly in thermodynamics. It will benefit postgraduate students, engineers, physicists and chemical engineers designing thermal systems to help improve energy efficiency and reliability of a thermal power plant.

  • Includes applications of entropy analysis methods in thermal power generation systems
  • Explains the relationship between entropy change and exergy destruction in an energy conversion/transfer process
  • Guides the reader to accurately utilize entropy methods for the analysis of system performance to improve efficiency
Preface xi
Acknowledgments xv
1 Fundamental concepts
1(12)
1.1 Thermodynamic properties
1(1)
1.2 Conservation of mass
2(1)
1.3 Conservation of energy
3(1)
1.4 First law of thermodynamics
3(2)
1.5 Second law of thermodynamics
5(2)
1.6 Third law of thermodynamics
7(1)
1.7 Entropy generation
7(3)
1.8 Combined first and second laws
10(1)
References
11(2)
2 Birth and evolution of thermodynamics
13(16)
2.1 Introduction
13(1)
2.2 Before 1800
14(2)
2.3 Between 1800 and 1849
16(7)
2.4 Theoretical developments
23(3)
2.5 Remarks
26(1)
References
27(2)
3 Teaching entropy
29(16)
3.1 Introduction
29(1)
3.2 The common tutorial method
29(7)
3.3 A proposed method
36(7)
References
43(2)
4 The common source of entropy increase
45(10)
4.1 Introduction
45(1)
4.2 Heat flow
46(1)
4.3 Pressure drop
46(2)
4.4 Expansion
48(2)
4.5 Mixing
50(2)
4.6 Interpretation of entropy
52(2)
References
54(1)
5 Most efficient engine
55(12)
5.1 Introduction
55(1)
5.2 Thermodynamic power cycles
56(8)
5.3 Efficiency comparison
64(2)
References
66(1)
6 Endoreversible heat engines
67(18)
6.1 Introduction
67(1)
6.2 Curzon-Ahlborn engine
68(4)
6.3 Novikov's engine
72(2)
6.4 Modified Novikov's engine
74(3)
6.5 Carnot vapor cycle
77(5)
References
82(3)
7 Irreversible engines---Closed cycles
85(18)
7.1 Introduction
85(1)
7.2 Brayton cycle
86(5)
7.3 Otto cycle
91(2)
7.4 Atkinson cycle
93(4)
7.5 Diesel cycle
97(2)
7.6 Isentropic compression and expansion
99(3)
7.7 Fixed heat input
102(1)
8 Irreversible engines---Open cycles
103(28)
8.1 Introduction
103(1)
8.2 Specific entropy generation
103(2)
8.3 Proof that Wrev is relatively constant
105(5)
8.4 Gas turbine cycle
110(6)
8.5 Regenerative gas turbine cycle
116(3)
8.6 Combined cycle
119(7)
8.7 Organic Rankine cycle
126(3)
References
129(2)
9 Entropy and fuel cells
131(18)
9.1 Introduction
131(1)
9.2 Maximum conversion efficiency
132(5)
9.3 Open circuit voltage
137(2)
9.4 Misconceptions
139(3)
9.5 SEG in a hybrid cycle
142(5)
References
147(2)
10 Entropy and chemical equilibrium
149(20)
10.1 Introduction
149(1)
10.2 Definition of equilibrium
150(1)
10.3 Experimental examination of theory
151(3)
10.4 Thermodynamics of chemical reaction
154(4)
10.5 Reaction advancement
158(5)
10.6 Semiempirical model
163(4)
References
167(2)
11 Exergy
169(1)
11.1 Introduction
169(1)
11.2 Thermal exergy
169(2)
11.3 Flow exergy
171(1)
11.4 Chemical exergy
172(3)
11.5 A simple relation for chemical exergy
175(2)
11.6 Maximum efficiency
177(2)
11.7 Minimum exhaust temperature
179(1)
11.8 Final notes
180(2)
References
182(3)
Nomenclature 185(4)
Appendices 189(4)
Index 193
Yousef Haseli is an Assistant Professor at the School of Engineering and Technology, Central Michigan University. He has conducted research on various subjects in the field of thermofluids and energy sciences for over a decade, and has the experience of working with renowned scientists at some of the worlds top universities. He received a PhD in Mechanical Engineering at Eindhoven University of Technology, the Netherlands, followed by a postdoctoral position at Massachusetts Institute of Technology.

Dr. Haseli has presented his research findings in numerous international conferences. He is a recipient of several awards, the most distinguished one being the Academic Gold Medal Award of the Governor General of Canada. His research interests include thermochemical conversion of biomass (torrefaction, gasification, pyrolysis), advanced energy conversion systems, clean energy and fuel production, two-phase/reactive flows, and engineering thermodynamics. Dr. Haselis research activities have led to one book and over 30 journal articles.