Atjaunināt sīkdatņu piekrišanu

E-grāmata: Entropy-Enthalpy Compensation: Finding a Methodological Common Denominator through Probability, Statistics, and Physics

Edited by , Edited by , Edited by
  • Formāts: 418 pages
  • Izdošanas datums: 29-Dec-2020
  • Izdevniecība: Jenny Stanford Publishing
  • Valoda: eng
  • ISBN-13: 9781000091861
  • Formāts - PDF+DRM
  • Cena: 130,74 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 418 pages
  • Izdošanas datums: 29-Dec-2020
  • Izdevniecība: Jenny Stanford Publishing
  • Valoda: eng
  • ISBN-13: 9781000091861

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Professionals recognize entropy-enthalpy compensation as an important factor in molecular recognition, lead design, water networks, and protein engineering. It can be experimentally studied by proper combinations of diverse spectroscopic approaches with isothermal titration calorimetry and is clearly related to molecular dynamics. So, how should we treat entropy-enthalpy compensation? Is it a stubborn hindrance that solely complicates the predictability of phenomena otherwise laid on the line by Mother Nature? How should we then deal with it? This book dwells on these posers. It combines two chapters written by globally recognized specialists. Chapter 1 deals with general issues and suggests a definite approach to how we may answer the posers. Chapter 2 shows how the approach outlined might be successfully applied in a rational design of enzymes. This might provide other interesting strategic perspectives in the general theoretical physical chemistry field.

Preface xi
1 Entropy-Enthalpy Compensation and Exploratory Factor Analysis of Correlations: Are There Common Points?
1(238)
B. Nordin
E. B. Starikov
1.1 Introduction
2(2)
1.2 Results and Discussion
4(38)
1.2.1 Macroscopic Thermodynamics Considered from the Standpoint of van der Waals Equation of State
4(6)
1.2.2 Correctness of Our Macroscopic-Thermodynamic Approach
10(1)
1.2.3 What Is the Actual Difference between Gibbs and Helmholtz Functions?
11(4)
1.2.4 The Actual Physical Sense of the EEC
15(3)
1.2.5 Statistical-Mechanical Standpoint
18(2)
1.2.6 What Is the Actual Probability Distribution behind the Statistical Mechanics?
20(5)
1.2.7 Bayesian Statistical Thermodynamics of Real Gases
25(4)
1.2.8 Applicability of Linhart's Approach to Real Gases
29(4)
1.2.9 Is There Some Physical Connection between Boltzmann's and Gibbs' Entropy Formulae?
33(4)
1.2.10 Can Our Approach Be Really Productive?
37(2)
1.2.11 A Methodological Perspective
39(1)
1.2.12 What Is the Actual Zest of Our Approach?
40(2)
1.3 Conclusions
42(1)
1.4 Outlook
43(6)
Appendix 1 to
Chapter 1
49(6)
Appendix 2 to
Chapter 1: Methodological Roots and Significance of Energetics
55(1)
A2.1 Introduction
55(4)
A2.2 Energetics Is a Generally Applicable Concept
59(90)
A2.2.1 Foreword
59(2)
A2.2.2 The First Definition of Entropy
61(2)
A2.2.3 Introduction and Preliminary Concepts
63(13)
A2.2.4 Succinct Presentation of Thermodynamic Principles
76(1)
A2.2.4.1 Joule-Mayer principle
77(3)
A2.2.4.2 Principle of Carnot-Clausius
80(7)
A2.2.5 Energy and the Forms of Sensitivity
87(15)
A2.2.6 Third Part
102(1)
A2.2.6.1 The muscle system and energetics
102(6)
A2.2.6.2 Analogy between the muscle system and the nervous system
108(8)
A2.2.6.3 Energetics and the nervous system
116(6)
A2.2.6.4 Energetics and the nervous system [ Continued)
122(7)
A2.2.7 Thermodynamic Design of Some Mental Situations
129(12)
A2.2.8 Summary and Conclusions
141(8)
A2.3 Our General Conclusion
149(10)
A2.3.1 The Balance of Bodies: Types of Body Balance
151(2)
A2.3.2 Our Immediate Comment
153(6)
A2.4 How to Employ the Ideas of Energetics: A Methodological Reiteration
159(54)
A2.4.1 How to Make a Mechanical Theory of Mental Phenomena
159(8)
A2.4.2
167(6)
A2.4.3
173(8)
A2.4.4
181(3)
A2.4.5 The Senses: Theory of the Consecutive Images
184(4)
A2.4.6 Demential Law by Paul Janet
188(3)
A2.4.7 Psychoses
191(2)
A2.4.8 Mechanical Representation of Psychic Phenomena
193(2)
A2.4.8.1 Mechanism of dementia
195(2)
A2.4.8.2 Mechanism of sensations
197(1)
A2.4.8.3 Mechanism of psychoses
198(2)
A2.4.8.4 Consequences
200(1)
A2.4.8.5 Influence of the cerebral inertia coefficient
201(9)
A2.4.9 Conclusion
210(3)
Appendix 3 to
Chapter 1: A Methodological Outlook
213(26)
2 Polynomial Exploratory Factor Analysis on Molecular Dynamics Trajectory of the Ras-GAP System: A Possible Theoretical Approach to Enzyme Engineering
239(140)
E. B. Starikov
Kohei Shimamura
Shota Matsunaga
Shigenori Tanaka
2.1 Introduction
240(3)
2.2 Results and Discussion
243(6)
2.2.1 Linear Exploratory Factor Analysis Results
243(2)
2.2.2 Nonlinear Exploratory Factor Analysis Results
245(4)
2.3 Detailed Description of the Method
249(12)
2.3.1 Difference between Confirmatory and Exploratory Factor Analysis
250(3)
2.3.2 Difficulty Factors in Factor Analysis
253(3)
2.3.3 Difference between Linear and Nonlinear Factor Analysis
256(1)
2.3.4 The System under Study: Choosing the Proper Variables to Analyze the Macromolecular Dynamics
257(2)
2.3.5 Technical Details of the MD Simulation and Data Processing
259(1)
2.3.5 The system setup
259(1)
2.3.5 MD simulation procedure
259(2)
2.3.5 Analyses of MD trajectories
261(1)
2.4 Conclusion
261(7)
Supplementary Material to
Chapter 2
268(111)
Index 379
Evgeni Starikov is a specialist in theoretical biophysical chemistry with nearly 30 years of professional experience. Currently, he is a freelance researcher at Chalmers University of Technology, Sweden, and Kobe University, Japan. Prof. Starikov has authored around 100 articles and a monograph and co-edited a book. His current research interests include applications of thermodynamics.

Bengt Nordén is chair professor of physical chemistry at the Chalmers University of Technology, Gothenburg, Sweden, since 1979. He is a member of the Royal Swedish Academy of Sciences Class that awards the Nobel Prize for Chemistry and founder and chairman of the Molecular Frontiers Foundation, a global organization hosted by the academy to identify breakthroughs in science early on and stimulate young peoples and societys interests in science by entry through molecular sciences. He has authored around 500 scientific papers and textbooks mainly on DNA and other biomacromolecules studied in solution using polarized light spectroscopy.

Shigenori Tanaka is professor at Kobe University, Japan, since 2004. He has authored around 170 peer-reviewed papers and co-edited a couple of books. His primary research interests are the development of first-principles computational methods for biomolecular systems and their applications for bottom-up modeling of biological phenomena.