Atjaunināt sīkdatņu piekrišanu

E-grāmata: Environmental and Agricultural Microbiology: Applications for Sustainability

Edited by (Utkal University, Odisha, India), Edited by (Odisha University of Agriculture and Technology, Odisha, India), Edited by (Odisha University of Agriculture and Technology, Odisha, India), Edited by (Odisha University of Agriculture and Technology, Odisha, India)
  • Formāts: EPUB+DRM
  • Izdošanas datums: 11-Aug-2021
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781119526742
  • Formāts - EPUB+DRM
  • Cena: 222,41 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 11-Aug-2021
  • Izdevniecība: Wiley-Scrivener
  • Valoda: eng
  • ISBN-13: 9781119526742

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Environmental and Agricultural Microbiology

Uniquely reveals the state-of-the-art microbial research/advances in the environment and agriculture fields

Environmental and Agricultural Microbiology: Applications for Sustainability is divided into two parts which embody chapters on sustenance and life cycles of microorganisms in various environmental conditions, their dispersal, interactions with other inhabited communities, metabolite production, and reclamation. Though books pertaining to soil & agricultural microbiology/environmental biotechnology are available, there is a dearth of comprehensive literature on the behavior of microorganisms in the environmental and agricultural realm.

Part 1 includes bioremediation of agrochemicals by microalgae, detoxification of chromium and other heavy metals by microbial biofilm, microbial biopolymer technology including polyhydroxyalkanoates (PHAs) and polyhydroxybutyrates (PHB), their production, degradability behaviors, and applications. Biosurfactants production and their commercial importance are also systematically represented in this part. Part 2 having 9 chapters, facilitates imperative ideas on approaches for sustainable agriculture through functional soil microbes, next-generation crop improvement strategies via rhizosphere microbiome, production and implementation of liquid biofertilizers, mitigation of methane from livestock, chitinases from microbes, extremozymes, an enzyme from extremophilic microorganism and their relevance in current biotechnology, lithobiontic communities, and their environmental importance, have all been comprehensively elaborated. In the era of sustainable energy production, biofuel and other bioenergy products play a key role, and their production from microbial sources are frontiers for researchers. The final chapter unveils the importance of microbes and their consortia for management of solid waste in amalgamation with biotechnology

Audience

The book will be read by environmental microbiologists, biotechnologists, chemical and agricultural engineers.
Preface xvii
Part 1 Microbial Bioremediation and Biopolymer Technology
1(218)
1 A Recent Perspective on Bioremediation of Agrochemicals by Microalgae: Aspects and Strategies
3(22)
Prithu Baruah
Neha Chaurasia
1.1 Introduction
4(2)
1.2 Pollution Due to Pesticides
6(3)
1.2.1 Acute Effects
8(1)
1.2.2 Chronic Effects
9(1)
1.3 Microalgal Species Involved in Bioremediation of Pesticides
9(4)
1.4 Strategies for Phycoremediation of Pesticides
13(1)
1.4.1 Involvement of Enzymes in Phycoremediation of Pesticides
13(1)
1.4.2 Use of Genetically Engineered Microalgae
13(1)
1.5 Molecular Aspects of Pesticide Biodegradation by Microalgae
14(2)
1.6 Factor Affecting Phycoremediation of Pesticides
16(1)
1.6.1 Biological Factor
16(1)
1.6.2 Chemical Factor
16(1)
1.6.3 Environment Factor
17(1)
1.7 Benefit and Shortcomings of Phycoremediation
17(1)
1.7.1 Benefits
17(1)
1.7.2 Shortcomings
17(1)
1.8 Conclusion and Future Prospects
18(7)
References
18(7)
2 Microalgal Bioremediation of Toxic Hexavalent Chromium: A Review
25(14)
Pritikrishna Majhi
Satyabrata Nayak
Saubhagya Manjari Samantaray
2.1 Introduction
25(2)
2.1.1 Chromium Cycle
27(1)
2.2 Effects of Hexavalent Chromium Toxicity
27(3)
2.2.1 Toxicity to Microorganisms
27(1)
2.2.2 Toxicity to Plant Body
28(1)
2.2.3 Toxicity to Animals
29(1)
2.3 Chromium Bioremediation by Microalgae
30(2)
2.3.1 Cyanobacteria
30(1)
2.3.2 Green Algae
31(1)
2.3.3 Diatoms
31(1)
2.4 Mechanism Involved in Hexavalent Chromium Reduction in Microalgae
32(1)
2.5 Conclusion
33(6)
References
34(5)
3 Biodetoxification of Heavy Metals Using Biofilm Bacteria
39(24)
Adyasa Barik
Debasish Biswal
A. Arun
Vellaisamy Balasubramanian
3.1 Introduction
40(1)
3.2 Source and Toxicity of Heavy Metal Pollution
41(6)
3.2.1 Non-Essential Heavy Metals
42(1)
3.2.1.1 Arsenic
42(1)
3.2.1.2 Cadmium
43(1)
3.2.1.3 Chromium
43(1)
3.2.1.4 Lead
44(1)
3.2.1.5 Mercury
45(1)
3.2.2 Essential Heavy Metals
45(1)
3.2.2.1 Copper
45(1)
3.2.2.2 Zinc
46(1)
3.2.2.3 Nickel
46(1)
3.3 Biofilm Bacteria
47(1)
3.4 Interaction of Metal and Biofilm Bacteria
47(1)
3.5 Biodetoxification Mechanisms
48(7)
3.5.1 Biosorption
48(2)
3.5.2 Bioleaching
50(2)
3.5.3 Biovolatilization
52(2)
3.5.4 Bioimmobilization
54(1)
3.6 Conclusion
55(8)
References
55(8)
4 Microbial-Derived Polymers and Their Degradability Behavior for Future Prospects
63(20)
Mohammad Asif Ali
Aniruddha Nag
Maninder Singh
4.1 Introduction
63(2)
4.2 Polyamides
65(4)
4.2.1 Bioavailability and Production
66(1)
4.2.2 Biodegradability of Polyamides
66(1)
4.2.3 Degradation of Nylon 4 Under the Soil
67(1)
4.2.4 Fungal Degradation of Nylon 6 and Nylon 66 (Synthetic Polyamide)
67(1)
4.2.5 Itaconic Acid-Based Heterocyclic Polyamide
68(1)
4.2.6 Summary and Future Development
69(1)
4.3 Polylactic Acid
69(5)
4.3.1 Availability and Production
70(1)
4.3.2 Polymerization Method
71(2)
4.3.3 Biodegradability of Polylactic Acid
73(1)
4.3.4 Copolymerization Method
73(1)
4.3.5 Blending Method
73(1)
4.3.6 Nanocomposite Formation
74(1)
4.3.7 Summary
74(1)
4.4 Polyhydroxyalkanoates
74(3)
4.4.1 Biosynthesis of Polyhydroxyalkanoates
75(1)
4.4.2 Application of PHAs
75(1)
4.4.3 Biodegradability of PHAs
76(1)
4.4.4 Degradability Methods
76(1)
4.4.5 Summary
77(1)
4.5 Conclusion and Future Development
77(6)
References
78(5)
5 A Review on PHAs: The Future Biopolymer
83(18)
S. Mohapatra
K. Vishwakarma
N. C. Joshi
S. Matty
R. Kumar
M. Ramchander
S. Pattnaik andD. P. Samantaray
5.1 Introduction
84(1)
5.2 Green Plastic: Biodegradable Polymer Used as Plastic
85(3)
5.3 Difference Between Biopolymer and Bioplastic
88(1)
5.4 Polyhydroxyalkanoates
88(1)
5.5 Polyhydroxyalkanoates and Its Applications
89(1)
5.6 Microorganisms Producing PHAs
90(6)
5.7 Advantages
96(1)
5.8 Conclusion and Future Prospective
96(5)
References
96(5)
6 Polyhydroxybutyrate as an Eco-Friendly Alternative of Synthetic Plastics
101(50)
Shikha Sharma
Priyanka Sharma
Vishal Sharma
Bijender Kumar Bajaj
6.1 Introduction
102(2)
6.2 Bioplastics
104(2)
6.3 Bioplastics vs. Petroleum-Based Plastics
106(1)
6.4 Classification of Biodegradable Polymers
107(2)
6.5 PHB-Producing Bacteria
109(4)
6.6 Methods for Detecting PHB Granules
113(1)
6.7 Biochemical Pathway for Synthesis of PHB
114(2)
6.8 Production of PHB
116(7)
6.8.1 Process Optimization for PHB Production
117(1)
6.8.2 Optimization of PHB Production by One Variable at a Time Approach
118(2)
6.8.3 Statistical Approaches for PHB Optimization
120(3)
6.9 Production of PHB Using Genetically Modified Organisms
123(2)
6.10 Characterization of PHB
125(1)
6.11 Various Biochemical Techniques Used for PHB Characterization
126(5)
6.11.1 Fourier Transform Infrared Spectroscopy
127(1)
6.11.2 Differential Scanning Calorimetry
127(1)
6.11.3 Thermogravimetric Analysis
128(1)
6.11.4 X-Ray Powder Diffraction (XRD)
128(1)
6.11.5 Nuclear Magnetic Resonance Spectroscopy
128(1)
6.11.6 Microscopic Techniques
129(1)
6.11.7 Elemental Analysis
130(1)
6.11.8 Polarimetry
130(1)
6.11.9 Molecular Size Analysis
130(1)
6.12 Biodegradation of PHB
131(1)
6.13 Application Spectrum of PHB
132(3)
6.14 Conclusion
135(1)
6.15 Future Perspectives
135(16)
Acknowledgements
136(1)
References
136(15)
7 Microbial Synthesis of Polyhydroxyalkanoates (PHAs) and Their Applications
151(32)
N.N.N. Anitha
Rajesh K. Srivastava
7.1 Introduction
153(3)
7.2 Conventional Plastics and Its Issues in Utility
156(3)
7.2.1 Synthetic Plastic and Its Accumulation or Degradation Impacts
158(1)
7.3 Bioplastics
159(12)
7.3.1 Polyhydroxyalkanoates
160(4)
7.3.1.1 Microorganisms in the Production of PHAs
164(7)
7.4 Fermentation for PHAs Production
171(2)
7.5 Downstream Process for PHAs
173(2)
7.6 Conclusions
175(8)
References
176(7)
8 Polyhydroxyalkanoates for Sustainable Smart Packaging of Fruits
183(14)
S. Pati
S. Mohapatra
S. Maity
A. Dash
D. P. Samantaray
8.1 Introduction
183(2)
8.2 Physiological Changes of Fresh Fruits During Ripening and Minimal Processing
185(1)
8.3 Smart Packaging
186(2)
8.4 Biodegradable Polymers for Fruit Packaging
188(1)
8.5 Legal Aspects of Smart Packaging
189(1)
8.6 Pros and Cons of Smart Packaging Using PHAs
189(1)
8.7 Conclusion
190(7)
References
191(6)
9 Biosurfactants Production and Their Commercial Importance
197(22)
Saishree Rath
Rajesh K. Srivastava
9.1 Introduction
198(2)
9.2 Chemical Surfactant Compounds
200(5)
9.2.1 Biosurfactant Compounds
202(3)
9.3 Properties of Biosurfactant Compound
205(1)
9.3.1 Activities of Surface and Interface Location
205(1)
9.3.2 Temperature and pH Tolerance
205(1)
9.3.3 Biodegradability
206(1)
9.3.4 Low Toxicity
206(1)
9.3.5 Emulsion Forming and Breaking
206(1)
9.4 Production of Biosurfactant by Microbial Fermentation
206(5)
9.4.1 Factors Influencing the Production of Biosurfactants
209(1)
9.4.1.1 Environmental Conditions
209(1)
9.4.1.2 Carbon Substrates
210(1)
9.4.1.3 Estimation of Biosurfactants Activity
211(1)
9.5 Advantages, Microorganisms Involved, and Applications of Biosurfactants
211(4)
9.5.1 Advantages of Using Biosurfactants
211(1)
9.5.1.1 Easy Raw Materials for Biosurfactant Biosynthesis
211(1)
9.5.1.2 Low Toxic Levels for Environment
211(1)
9.5.1.3 Best Operation With Surface and Interface Activity
212(1)
9.5.1.4 Good Biodegradability
212(1)
9.5.1.5 Physical Variables
212(1)
9.5.2 Microbial Sources
212(1)
9.5.3 Production of Biosurfactants
213(1)
9.5.3.1 Production of Rhamnolipids
213(1)
9.5.3.2 Regulation of Rhamnolipids Synthesis
214(1)
9.5.3.3 Commercial Use of Biosurfactants
214(1)
9.6 Conclusions
215(4)
References
216(3)
Part 2 Microbes in Sustainable Agriculture and Biotechnological Applications
219(204)
10 Functional Soil Microbes: An Approach Toward Sustainable Horticulture
221(22)
C. Sarathambal
R. Dinesh
V. Srinivasan
10.1 Introduction
221(1)
10.2 Rhizosphere Microbial Diversity
222(1)
10.3 Plant Growth-Promoting Rhizobacteria
223(12)
10.3.1 Nitrogen Fixation
224(1)
10.3.2 Production of Phytohormones
225(1)
10.3.3 Production of Enzymes That can Transform Crop Growth
225(1)
10.3.4 Microbial Antagonism
226(1)
10.3.5 Solubilization of Minerals
226(2)
10.3.6 Siderophore and Hydrogen Cyanide (HCN) Production
228(1)
10.3.7 Cyanide (HCN) Production
229(1)
10.3.8 Plant Growth-Promoting Rhizobacteria on Growth of Horticultural Crops
229(6)
10.4 Conclusion and Future Perspectives
235(8)
References
235(8)
11 Rhizosphere Microbiome: The Next-Generation Crop Improvement Strategy
243(14)
M. Anandaraj
S. Manivannan
P. Umadevi
11.1 Introduction
244(1)
11.2 Rhizosphere Engineering
245(1)
11.3 Omics Tools to Study Rhizosphere Metagenome
246(5)
11.3.1 Metagenomics
246(2)
11.3.2 Metaproteomics
248(1)
11.3.3 Metatranscriptomics
249(1)
11.3.4 Ionomics
250(1)
11.4 As Next-Generation Crop Improvement Strategy
251(1)
11.5 Conclusion
252(5)
References
252(5)
12 Methane Emission and Strategies for Mitigation in Livestock
257(18)
Nibedita Sahoo
Swati Pattnaik
Matrujyoti Pattnaik
Swati Mohapatra
12.1 Introduction
258(1)
12.2 Contribution of Methane from Livestock
259(1)
12.3 Methanogens
259(3)
12.3.1 Rumen Microbial Community
260(1)
12.3.2 Methanogens Found in Rumen
260(1)
12.3.3 Enrichment of Methanogens from Rumen Liquor
261(1)
12.3.4 Screening for Methane Production
261(1)
12.3.5 Isolation of Methanogens
261(1)
12.3.6 Molecular Characterization
261(1)
12.4 Methanogenesis: Methane Production
262(2)
12.4.1 Pathways of Methanogenesis
262(1)
12.4.2 Pathway of CO2 Reduction
262(1)
12.4.3 CO2 Reduction to Formyl-Methanofuran
263(1)
12.4.4 Conversion of the Formyl Group from Formyl-Methanofuran to Formyl-Tetrahydromethanopterin
263(1)
12.4.5 Formation of Methenyl-Tetrahydromethanopterin
263(1)
12.4.6 Reduction of Methenyl-Tetrahydromethanopterin to Methyl-Tetrahydromethanopterin
263(1)
12.4.7 Reduction of Methyl-Tetrahydromethanopterin to Methyl-S-Coenzyme M
264(1)
12.4.8 Reduction of Methyl-S-Coenzyme M to CH4
264(1)
12.5 Strategies for Mitigation of Methane Emission
264(6)
12.5.1 Dietary Manipulation
264(1)
12.5.1.1 Increasing Dry Matter Intake
264(1)
12.5.1.2 Increasing Ration Concentrate Fraction
265(1)
12.5.1.3 Supplementation of Lipid
265(1)
12.5.1.4 Protozoa Removal
266(1)
12.5.2 Feed Additives
266(1)
12.5.2.1 Ionophore Compounds
266(1)
12.5.2.2 Halogenated Methane Compound
267(1)
12.5.2.3 Organic Acid
267(1)
12.5.3 Microbial Feed Additives
268(1)
12.5.3.1 Vaccination
268(1)
12.5.3.2 Bacteriophages and Bacteriocins
269(1)
12.5.4 Animal Breeding and Selection
270(1)
12.6 Conclusion
270(5)
References
271(4)
13 Liquid Biofertilizers and Their Applications: An Overview
275(18)
Avro Dey
13.1 Introduction
275(3)
13.1.1 Chemical Fertilizer and its Harmful Effect
277(1)
13.2 Biofertilizers "Boon for Mankind"
278(1)
13.3 Carrier-Based Biofertilizers
279(3)
13.3.1 Solid Carrier-Based Biofertilizers
279(1)
13.3.2 Liquid Biofertilizer
279(3)
13.4 Sterilization of the Carrier
282(1)
13.5 Merits of Using Liquid Biofertilizer Over Solid Carrier-Based Biofertilizer
282(1)
13.6 Types of Liquid Biofertilizer
283(2)
13.7 Production of Liquid Biofertilizers
285(3)
13.7.1 Isolation of the Microorganism
285(1)
13.7.2 Preparation of Medium and Growth Condition
285(1)
13.7.3 Culture and Preservation
286(1)
13.7.4 Preparation of Liquid Culture
286(1)
13.7.5 Fermentation and Mass Production
287(1)
13.7.6 Formulation of the Liquid Biofertilizers
287(1)
13.8 Applications of Biofertilizers
288(2)
13.9 Conclusion
290(3)
References
291(2)
14 Extremozymes: Biocatalysts From Extremophilic Microorganisms and Their Relevance in Current Biotechnology
293(20)
Khushbu Kumari Singh
Lopamudra Ray
14.1 Introduction
294(1)
14.2 Extremophiles: The Source of Novel Enzymes
295(6)
14.2.1 Thermophilic Extremozymes
296(3)
14.2.2 Psychrophilic Extremozymes
299(1)
14.2.3 Halophilic Extremozymes
300(1)
14.2.4 Alkaliphilic/Acidiophilic Extremozymes
300(1)
14.2.5 Piezophilic Extremozymes
301(1)
14.3 The Potential Application of Extremozymes in Biotechnology
301(2)
14.4 Conclusion and Future Perspectives
303(10)
References
304(9)
15 Microbial Chitinases and Their Applications: An Overview
313(28)
Suraja Kumar Nayak
Swapnarani Nayak
Swaraj Mohanty
Jitendra Kumar Sundaray
Bibhuti Bhusan Mishra
15.1 Introduction
314(1)
15.2 Chitinases and Its Types
315(2)
15.3 Sources of Microbial Chitinase
317(5)
15.3.1 Bacterial Chitinases
317(2)
15.3.2 Fungal Chitinases
319(2)
15.3.3 Actinobacteria
321(1)
15.3.4 Viruses/Others
322(1)
15.4 Genetics of Microbial Chitinase
322(1)
15.5 Biotechnological Advances in Microbial Chitinase Production
323(4)
15.5.1 Media Components
324(1)
15.5.2 Physical Parameters
325(1)
15.5.3 Modes and Methods of Fermentation
325(1)
15.5.4 Advances Biotechnological Methods
326(1)
15.6 Applications of Microbial Chitinases
327(5)
15.6.1 Agricultural
328(1)
15.6.1.1 Biopesticides
328(1)
15.6.1.2 Biocontrol
328(1)
15.6.2 Biomedical
329(1)
15.6.3 Pharmaceutical
329(1)
15.6.4 Industrial
330(1)
15.6.5 Environmental
330(1)
15.6.5.1 Waste Management
331(1)
15.6.6 Others
331(1)
15.7 Conclusion
332(9)
References
332(9)
16 Lithobiontic Ecology: Stone Encrusting Microbes and their Environment
341(20)
Abhik Mojumdar
Himadri Tanaya Behera
Lopamudra Ray
16.1 Introduction
341(1)
16.2 Diversity of Lithobionts and Its Ecological Niche
342(3)
16.2.1 Epiliths
342(1)
16.2.2 Endoliths
343(1)
16.2.3 Hypoliths
344(1)
16.3 Colonization Strategies of Lithobionts
345(3)
16.3.1 Temperature
346(1)
16.3.2 Water Availability
346(1)
16.3.3 Light Availability
347(1)
16.4 Geography of Lithobbiontic Coatings
348(3)
16.4.1 Bacteria
348(1)
16.4.2 Cyanobacteria
349(1)
16.4.3 Fungi
349(1)
16.4.4 Algae
349(1)
16.4.5 Lichens
350(1)
16.5 Impacts of Lithobiontic Coatings
351(1)
16.5.1 On Organic Remains
351(1)
16.5.2 On Rock Weathering
351(1)
16.5.3 On Rock Coatings
352(1)
16.6 Role of Lithobionts in Harsh Environments
352(1)
16.7 Conclusion
353(8)
Acknowledgement
353(1)
References
353(8)
17 Microbial Intervention in Sustainable Production of Biofuels and Other Bioenergy Products
361(22)
Himadri Tanaya Behera
Abhik Mojumdar
Smruti Ranjan Das
Chiranjib Mohapatra
Lopamudra Ray
17.1 Introduction
362(1)
17.2 Biomass
363(1)
17.3 Biofuel
364(6)
17.3.1 Biodiesel
365(1)
17.3.1.1 Microalgae in Biodiesel Production
365(1)
17.3.1.2 Oleaginous Yeasts in Biodiesel Production
366(1)
17.3.1.3 Oleaginous Fungi in Biodiesel Production
366(1)
17.3.1.4 Bacteria in Biodiesel Production
367(1)
17.3.2 Bioalcohol
367(1)
17.3.2.1 Bioethanol
367(1)
17.3.2.2 Biobutanol
368(1)
17.3.3 Biogas
369(1)
17.3.4 Biohydrogen
369(1)
17.4 Other Bioenergy Products
370(6)
17.4.1 Microbial Fuel Cells
370(2)
17.4.1.1 Microbes Used in MFCs
372(1)
17.4.1.2 Future Aspects of Microbial Fuel Cells
372(2)
17.4.2 Microbial Nanowires in Bioenergy Application
374(1)
17.4.2.1 Pili
375(1)
17.4.2.2 Outer Membranes and Extended Periplasmic Space
375(1)
17.4.2.3 Unknown Type---MNWs Whose Identity to be Confirmed
375(1)
17.4.3 Microbial Nanowires in Bioenergy Production
376(1)
17.5 Conclusion
376(7)
References
376(7)
18 Role of Microbes and Microbial Consortium in Solid Waste Management
383(40)
Rachana Jain
Lopa Pattanaik
Susant Kumar Padhi
Satya Narayan Naik
18.1 Introduction
384(1)
18.2 Types of Solid Waste
384(2)
18.2.1 Domestic Wastes
385(1)
18.2.2 Institutional and Commercial Wastes
385(1)
18.2.3 Wastes From Street Cleansing
385(1)
18.2.4 Industrial Wastes
385(1)
18.2.5 Nuclear Wastes
385(1)
18.2.6 Agricultural Wastes
385(1)
18.3 Waste Management in India
386(4)
18.4 Solid Waste Management
390(1)
18.4.1 Municipal Solid Waste Management
390(1)
18.5 Solid Waste Management Techniques
390(23)
18.5.1 Incineration
392(1)
18.5.2 Pyrolysis and Gasification
392(1)
18.5.3 Landfilling
393(1)
18.5.4 Aerobic Composting
394(3)
18.5.5 Vermicomposting
397(4)
18.5.6 Anaerobic Digestion
401(1)
18.5.6.1 Enzymatic Hydrolysis
402(1)
18.5.6.2 Fermentation
402(1)
18.5.6.3 Acetogenesis
403(1)
18.5.6.4 Methanogenesis
403(1)
18.5.7 Bioethanol From Various Solid Wastes
404(9)
18.6 Conclusion
413(10)
References
413(10)
Index 423
Bibhuti Bhusan Mishra is working as the ICAR-Emeritus Professor at the P.G. Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India. He obtained his PhD Degree in 1987 from Berhampur University, Odisha. He has more than 60 research publications to his name.

Suraja Kumar Nayak obtained his PhD from Odisha University of Agriculture and Technology in 2013 and is currently an assistant professor in the Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar, Odisha, India. His areas of teaching and research include general and environmental microbiology, soil microbiology, industrial & food biotechnology, microbial biotechnology. Dr. Nayak has published 18 scientific papers including book chapters in various journals and national & international books.

Swati Mohapatra is a research Professor in Wankwong University South Korea. She obtained her PhD in Microbiology from Orissa University of Agriculture and Technology in 2015. Her areas of teaching and research include environmental microbiology, polymer chemistry, industrial and material science, microbial molecular biology, infection biology, agriculture microbiology. Dr. Mohapatra has published 32 scientific articles in various national and international journals and 07 book chapters.

D. P. Samantaray obtained his PhD in Microbiology (2013) from Utkal University, Bhubaneswar, Odisha, India. He is an assistant professor in the Post Graduate Department of Microbiology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha. He is working in the field of bioenergy, bioremediation, biopolymer & composite materials including its biomedical and agricultural applications. He has published more than 70 scientific publications.