Atjaunināt sīkdatņu piekrišanu

E-grāmata: Environmental Analysis Laboratory Handbook [Wiley Online]

  • Formāts: 320 pages
  • Izdošanas datums: 25-Sep-2020
  • Izdevniecība: Wiley-Scrivener
  • ISBN-10: 111972483X
  • ISBN-13: 9781119724834
  • Wiley Online
  • Cena: 236,24 €*
  • * this price gives unlimited concurrent access for unlimited time
  • Formāts: 320 pages
  • Izdošanas datums: 25-Sep-2020
  • Izdevniecība: Wiley-Scrivener
  • ISBN-10: 111972483X
  • ISBN-13: 9781119724834
"Environmental analysis forms the is an important and growing field that is a part of many industries and scientific fields, and it is important for engineers, scientists, and students to understand the basics and be apprised of new theories and changes in processes or equipment. This volume covers both, offering a "one-stop-shop" for anyone working in environmental analysis"--

Today, environmental issues are a great cause of concern at the global level, and universities and other institutions around the world are involved in research on climate change, deforestation, pollution control, and many other issues. Moreover, environmental science and environmental biotechnology are inherent parts of various courses while some universities provide degrees in these fields. Although the environment perspective of water is discussed time and again in research, academic, and non-academic discussions, there is no book summarizing protocols involved in water quality analysis. The information seems to be sporadically distributed on the internet.

Even if available at all, the information does not discuss limits of the protocols or caveats involved. For example, essays on chemical oxygen demand (COD) on the internet mostly do not discuss differences between organic compounds of biological origin and aliphatic/aromatic. The authors have performed nearly all the protocols mentioned in this new volume, and their protocols are discussed in a simplified, easy-to-understand manner. The book has been written after elaborative discussions with and input from faculty and research students to ensure the clarity of the material for use on many levels. 

Further, the authors have emphasized low-cost methods which involve minimal use of high-end instrumentation keeping in mind limitations faced in developing countries.  A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels.  It is a must-have for any library. 
Preface xxi
Acknowledgement xxiii
Table of Abbreviations
xxv
Table of Symbols
xxvii
List of Figures
xxix
List of Tables
xxxiii
List of Chemicals and Respective Molecular Weight
xxxv
1 Air, Water and Soil: An Environmental Perspective
1(20)
1.1 Introduction
1(1)
1.2 Air
2(4)
1.2.1 Composition of Air
2(1)
1.2.2 Air Pollution
3(1)
1.2.3 Air Pollutants
3(2)
1.2.4 Adverse Effect of Contaminants
5(1)
1.3 Water
6(6)
1.3.1 Properties of Water Molecule
6(2)
1.3.2 Global Significance of Water
8(1)
1.3.3 Environmental Monitoring
9(1)
1.3.4 Water Quality Assessment in Recycling
10(1)
1.3.5 Wastewater Treatment Plant
10(1)
1.3.6 Working of Sewage Treatment Plant
11(1)
1.4 Soil
12(9)
1.4.1 Importance of Soil
13(1)
1.4.2 Types of Soil
13(1)
1.4.3 Soil Pollution
14(1)
1.4.4 Types of Soil Pollution
14(1)
1.4.5 Anthropogenic Activities
15(1)
1.4.6 Health Effects
16(1)
1.4.7 Ecosystem Effects
16(1)
1.4.8 Methods to Reduce Soil Pollution
17(1)
References
18(3)
2 Determination of Physical Properties of Environmental Samples
21(40)
2.1 Introduction
21(1)
2.2 Determination of Specific Gravity or Density in the Given Water Sample
22(6)
2.2.1 Principle
22(3)
2.2.2 Material Required
25(1)
2.2.3 Procedure for Specific Gravity Measurements Using Pycnometer/Volumetric Flask
26(1)
2.2.4 Observation Table
26(1)
2.2.4.1 Measurement of Specific Gravity of Water Sample
26(1)
2.2.4.2 Readings of Pycnometer
26(1)
2.2.5 Calculations
27(1)
2.2.6 Results
27(1)
2.2.7 Notes
27(1)
2.3 Determination of Turbidity of Given Water Sample
28(3)
2.3.1 Principle
28(1)
2.3.2 Nephelometric Method
28(1)
2.3.3 Material Required
29(1)
2.3.4 Procedure
30(1)
2.3.5 Standard Curve
30(1)
2.3.6 Calculation
31(1)
2.3.7 Note
31(1)
2.4 Determination of Total Suspended Solids
31(3)
2.4.1 Principle
31(1)
2.4.2 Material Required
32(1)
2.4.3 Procedure
32(1)
2.4.4 Observation
33(1)
2.4.5 Observation Table
33(1)
2.4.6 Calculation
34(1)
2.4.7 Results
34(1)
2.4.8 Notes
34(1)
2.5 Determination of Total Dissolved Solids
34(3)
2.5.1 Principle
34(1)
2.5.2 Material Required
35(1)
2.5.3 Procedure
36(1)
2.5.4 Observations Table
36(1)
2.5.5 Calculation
36(1)
2.5.6 Result
36(1)
2.5.7 Notes
37(1)
2.6 Determination of the Moisture Content of Soil
37(2)
2.6.1 Principle
37(1)
2.6.2 Material Required
37(1)
2.6.3 Procedure
38(1)
2.6.4 Observation
38(1)
2.6.5 Calculations
38(1)
2.6.6 Result
38(1)
2.7 Determination of pH Using Universal Indicator
39(6)
2.7.1 Principle
39(1)
2.7.2 pH of Natural Water Bodies
40(1)
2.7.3 Effects of pH Variation on Aquatic Life
40(1)
2.7.4 Universal Indicator
40(1)
2.7.5 Dyes
40(1)
2.7.5.1 Methyl Orange
40(1)
2.7.5.2 Methyl Red
41(1)
2.7.5.3 Bromothymol Blue
41(1)
2.7.5.4 Phenolphthalein
42(1)
2.7.6 Material Required
43(1)
2.7.7 Reagents Preparations
43(1)
2.7.8 Procedure
43(1)
2.7.9 Observations
43(1)
2.7.10 Results
44(1)
2.7.11 Notes
44(1)
2.8 pH Determination by Using pH Meter
45(3)
2.8.1 Principle
45(2)
2.8.2 Material Required
47(1)
2.8.3 Reagent Preparation
47(1)
2.8.4 Procedures
48(1)
2.8.5 Result
48(1)
2.8.6 Notes
48(1)
2.9 pH Determination of Soil
48(2)
2.9.1 Principle
48(1)
2.9.2 Materials Required
49(1)
2.9.3 Procedure
49(1)
2.9.4 Observation
50(1)
2.9.5 Results
50(1)
2.10 Determination of pH of Soil by Using pH Meter
50(1)
2.10.1 Principle
50(1)
2.10.2 Material Required
50(1)
2.10.3 Procedure
50(1)
2.10.4 Result
51(1)
2.11 Determination of pH of Soil by Using Universal Indicator
51(2)
2.11.1 Principle
51(1)
2.11.2 Reagent Preparation
51(1)
2.11.3 Procedure
52(1)
2.11.4 Observation Table
52(1)
2.12 Determination of Conductivity of Water
53(8)
2.12.1 Principle
53(1)
2.12.2 Calibration of the Instrument
54(1)
2.12.3 Reagent Preparation
54(1)
2.12.4 Steps to be Followed for Calibration
54(1)
2.12.5 Notes
55(1)
References
55(6)
3 Analysis of Organic Matter in Environmental Samples
61(30)
3.1 Introduction
61(1)
3.2 Determination of the Organic Content in Soil
62(3)
3.2.1 Principle
62(1)
3.2.2 Material Required
63(1)
3.2.3 Reagent Preparation
63(1)
3.2.4 Procedure
63(1)
3.2.5 Observation Table
64(1)
3.2.6 Calculations
64(1)
3.2.7 Notes
65(1)
3.3 Determination of Cation Exchange Capacity (CEC) of Soil
65(3)
3.3.1 Principle
65(1)
3.3.2 Importance of CEC
66(1)
3.3.3 Material Required
66(1)
3.3.4 Reagent Preparation
66(1)
3.3.5 Procedure
66(1)
3.3.6 Calculations
67(1)
3.3.7 Note
67(1)
3.4 Rapid Method for the Determination of Cation Exchange Capacity (CEC) of Soil
68(1)
3.4.1 Material Required
68(1)
3.4.2 Reagent Preparation
68(1)
3.4.3 Procedure
68(1)
3.4.4 Calculations
69(1)
3.4.5 Notes
69(1)
3.5 Determination of Biological Oxygen Demand (BOD) by Winkler's Method
69(5)
3.5.1 Principle
69(2)
3.5.2 Material Required
71(1)
3.5.3 Reagents Preparation
71(1)
3.5.4 Procedure
71(1)
3.5.5 Observation Table
72(1)
3.5.5.1 Dissolved Oxygen Initial or DO 0
72(1)
3.5.5.2 Dissolved Oxygen After 5 Days or DO 5
72(1)
3.5.6 Calculation
73(1)
3.5.7 Result
73(1)
3.5.8 Notes
73(1)
3.6 Determination of Biological Oxygen Demand by Dilution/Seeding Method
74(5)
3.6.1 Material Required
74(1)
3.6.2 Reagent Preparation
75(1)
3.6.3 Sample Preparation
76(1)
3.6.4 Procedure
76(1)
3.6.5 Observations
77(1)
3.6.6 Observations Table
78(1)
3.6.6.1 Dissolved Oxygen Initial or DO 0
78(1)
3.6.6.2 Dissolved Oxygen After 5 Days or DO 5
78(1)
3.6.7 Calculations
78(1)
3.6.8 Result
79(1)
3.6.9 Note
79(1)
3.7 Determination of Chemical Oxygen Demand by Potassium Permanganate Method
79(3)
3.7.1 Principle
79(1)
3.7.2 Material Required
80(1)
3.7.3 Reagent Preparation
80(1)
3.7.4 Procedure
81(1)
3.7.5 Observation Table
81(1)
3.7.6 Calculations
81(1)
3.7.7 Result
82(1)
3.7.8 Notes
82(1)
3.8 Determination of Chemical Oxygen Demand for Sewage Waste (Samples that do not contain Chloride, Nitrate, Aliphatic and Aromatic Compounds)
82(2)
3.8.1 Principle
82(1)
3.8.2 Material Required
82(1)
3.8.3 Reagent Preparation
82(1)
3.8.4 Procedure
83(1)
3.8.5 Observation Table
83(1)
3.8.6 Calculations
83(1)
3.8.7 Result
84(1)
3.8.8 Notes
84(1)
3.9 Determination of Chemical Oxygen Demand for Toxic Organic Waste Sample That Contains Chloride, Nitrate, Aliphatic and Aromatic Compounds
84(7)
3.9.1 Principle
84(1)
3.9.2 Material Required
84(1)
3.9.3 Procedure
85(1)
3.9.4 Observation
85(1)
3.9.5 Observations Table
86(1)
3.9.6 Calculations
86(1)
3.9.7 Result
86(1)
3.9.8 Note
86(1)
References
86(5)
4 Spectrophotometric and Titrimetrie Methods for Determination of Anions
91(38)
4.1 Introduction
91(1)
4.2 Determination of Sulphate Content for the Given Water Samples
92(4)
4.2.1 Principle
92(1)
4.2.2 Acid Rain
93(1)
4.2.3 Problems Caused by Sulphur
93(1)
4.2.4 Spectrophotometric Method
93(1)
4.2.5 Material Required
94(1)
4.2.6 Reagent Preparation
94(1)
4.2.7 Procedure
95(1)
4.2.8 Observation Table
95(1)
4.2.9 Results
96(1)
4.2.10 Notes
96(1)
4.3 Determination of Phosphate Content in Environmental Samples
96(4)
4.3.1 Importance of Phosphate
96(1)
4.3.2 Eutrophication
97(1)
4.3.3 Principle
98(1)
4.3.4 Material Required
98(1)
4.3.5 Reagent Preparation
98(1)
4.3.6 Procedure
99(1)
4.3.7 Procedure Estimation of Phosphate in Soil
99(1)
4.3.8 Observation Table
99(1)
4.3.9 Note
100(1)
4.4 Estimation of Nitrite and Nitrate in Water by Spectrophotometric Method
100(5)
4.4.1 Principle
100(2)
4.4.2 Materials Required
102(1)
4.4.3 Reagent Preparation
102(1)
4.4.4 Procedure
102(1)
4.4.5 Estimation Nitrite and Nitrate in Soil Sample
103(1)
4.4.6 Calculations
103(1)
4.4.7 Observation Table
104(1)
4.4.8 Notes
105(1)
4.5 Determination of Chloride Content in Water by Mohr's Method
105(3)
4.5.1 Principle
105(1)
4.5.2 Mohr's Method
106(1)
4.5.3 Importance
106(1)
4.5.4 Material Required
106(1)
4.5.5 Procedure
107(1)
4.5.6 Observation Table
107(1)
4.5.7 Calculation
107(1)
4.5.8 Result
108(1)
4.6 Determination of Chloride Content in Water by Volhard's Method
108(2)
4.6.1 Principle
108(1)
4.6.2 Material Required
109(1)
4.6.3 Reagent Preparation
109(1)
4.6.4 Procedure
109(1)
4.6.5 Observation Table
109(1)
4.6.6 Calculation
109(1)
4.6.7 Result
110(1)
4.6.8 Note
110(1)
4.7 Determination of Fluoride Content in Water
110(4)
4.7.1 Principle
110(2)
4.7.2 Material Required
112(1)
4.7.3 Reagent Preparation
112(1)
4.7.4 Procedure
112(1)
4.7.5 For Resorcin Blue Method: Preparation of Fluoride Working Standards
113(1)
4.7.6 Note
113(1)
4.8 Determination of Fluoride Content in Water Using Azurol B and Malachite Green
114(3)
4.8.1 Principle
114(1)
4.8.2 Material Required
114(1)
4.8.3 Reagent Preparation
115(1)
4.8.4 Procedure
115(1)
4.8.5 For Malachite Green Method, Preparation of Fluoride Working Standards
116(1)
4.8.6 For Azurol B Method, Preparation of Fluoride Working Standards
117(1)
4.9 Determination of Cyanide (Cyanide Anion) by Spectrophotometric Method
117(12)
4.9.1 Principle
117(1)
4.9.2 Cyanide Toxicity
118(1)
4.9.3 Material Required
119(1)
4.9.4 Reagent Preparations
119(1)
4.9.5 Procedure
120(1)
4.9.6 Calculation
120(1)
4.9.7 Single Reagent Method
120(1)
4.9.8 Observation Table
121(1)
4.9.9 Notes
121(1)
References
122(7)
5 Determination of Air Pollutants Using Titrimetric and Spectrophotometric Methods
129(22)
5.1 Introduction
129(2)
5.2 Determination of Particulate Matter in Air
131(2)
5.2.1 Principle
131(1)
5.2.2 Material Required
132(1)
5.2.3 Procedure
132(1)
5.2.4 Calculations
133(1)
5.2.5 Result
133(1)
5.3 Determination of Sulphur Dioxide (SO2) in Air
133(4)
5.3.1 Principle
133(1)
5.3.2 Material Required
134(1)
5.3.3 Reagent Preparation
134(1)
5.3.4 Procedure
135(1)
5.3.5 Calibration Curve
135(1)
5.3.6 Calculation
136(1)
5.3.7 Notes
136(1)
5.4 Determination of Nitrogen Dioxide (NO2) in Air
137(2)
5.4.1 Principle
137(1)
5.4.2 Material Required
138(1)
5.4.3 Reagent Preparation
138(1)
5.4.4 Procedure
138(1)
5.4.5 For Estimation of NO2 in Air
138(1)
5.4.6 Calculation
139(1)
5.4.7 Results
139(1)
5.5 Determination of Ozone Content in Air
139(3)
5.5.1 Principle
139(2)
5.5.2 Material Required
141(1)
5.5.3 Reagent Preparation
141(1)
5.5.4 Procedure
141(1)
5.5.5 Calculations
142(1)
5.5.6 Notes
142(1)
5.6 Determination of Carbon Dioxide (CO2) in Atmosphere
142(3)
5.6.1 Principle
142(2)
5.6.2 Material Required
144(1)
5.6.3 Protocol
144(1)
5.6.4 Calculation
144(1)
5.6.5 Note
145(1)
5.7 Determination of Air Quality Using Chlorophyll as Biomarker
145(6)
5.7.1 Principle
145(1)
5.7.2 Material Required
145(1)
5.7.3 Procedure
146(1)
5.7.4 Calculations
147(1)
5.7.5 Result
147(1)
References
147(4)
6 Spectrophotometric Methods for Determination of Heavy Metals
151(62)
6.1 Introduction
151(2)
6.2 Arsenic Determination by Using Variamine Blue
153(6)
6.2.1 Toxicity of Arsenic
153(2)
6.2.2 Principle
155(1)
6.2.3 Material Required
155(1)
6.2.4 Procedure
155(1)
6.2.5 Determination of Arsenic in Soil
156(1)
6.2.6 Standard Preparation
157(2)
6.2.7 Notes
159(1)
6.3 Arsenic Determination by Using Rhodamine-B
159(3)
6.3.1 Principle
159(1)
6.3.2 Material Required
160(1)
6.3.3 Procedure
160(1)
6.3.4 Standard Preparation
161(1)
6.3.5 Notes
161(1)
6.4 Chromium (VI) Determination by Using 1,5-diphenylcarbazide
162(2)
6.4.1 Mechanism of Chromium Toxicity
162(1)
6.4.2 Principle
162(1)
6.4.3 Material Required
162(1)
6.4.4 Reagent Preparation
163(1)
6.4.5 Procedure
163(1)
6.4.6 Standard Preparation
163(1)
6.4.7 Notes
164(1)
6.5 Lead (II) Determination by 2,5-dimercapto-1,3,4-thiadiazole (DMTD)
164(3)
6.5.1 Application of Lead
164(1)
6.5.2 Lead Toxicity
165(1)
6.5.3 Principle
165(1)
6.5.4 Material Required
165(1)
6.5.5 Reagent Preparation
165(1)
6.5.6 Procedure
166(1)
6.5.7 Standard Preparation
166(1)
6.5.8 Notes
167(1)
6.6 Lead (II) Determination by using 5-Bromo-2-hydroxy - 3-methoxybenzaldehyde-p-hydroxybenzoic hydrazone (BHMBHBH)
167(3)
6.6.1 Principle
167(1)
6.6.2 Material Required
168(1)
6.6.3 Reagent Preparation
168(1)
6.6.4 Procedure
168(1)
6.6.5 Standard Preparation
169(1)
6.6.6 Notes
169(1)
6.7 Mercury (II) Determination by using 2-Acetylpyridine Thiosemicarbazone (APT)
170(4)
6.7.1 Mercury Toxicity
170(1)
6.7.2 Mechanism of Toxicity
170(1)
6.7.3 Material Required
171(1)
6.7.4 Reagent Preparation
172(1)
6.7.5 Sample Preparation
172(1)
6.7.6 Procedure
172(1)
6.7.7 Estimation of Mercury in Soil
173(1)
6.7.8 Standard Preparation
173(1)
6.7.9 Notes
174(1)
6.8 Mercury (II) Determination by Using Diphenyl Thiocarbazone
174(3)
6.8.1 Principle
174(1)
6.8.2 Material Required
174(1)
6.8.3 Reagent Preparation
175(1)
6.8.4 Sample Preparation
175(1)
6.8.5 Procedure
175(1)
6.8.6 Determination of Mercury in Soil
175(1)
6.8.7 Standard Preparation
176(1)
6.8.8 Notes
177(1)
6.9 Nickel (II) Determination by Using (E)-N1-(2-hydroxy-5-nitrobenzylidene) Isonicotinoyl Hydrazone (HNBISNH) and 2-(4-fluoro benzylideneamino) Benzene Thiol (FBBT)
177(4)
6.9.1 Principle
177(1)
6.9.2 Importance of Nickel
177(1)
6.9.3 Material Required
178(1)
6.9.4 Reagent Preparation
178(1)
6.9.5 Procedure
179(1)
6.9.6 Determination of Nickel in Soil
180(1)
6.9.7 Standard Preparation
180(1)
6.9.8 Notes
180(1)
6.10 Cadmium Determination by Using 1, 2-Dihydroxy Anthraquinone-3-Sulphonic Acid, Sodium Salt (Alizarin red S)
181(4)
6.10.1 Principle and Importance
181(1)
6.10.2 Material Required
182(1)
6.10.3 Reagent Preparation
182(1)
6.10.4 Procedure
183(1)
6.10.5 Determination of Cadmium in Soil
183(1)
6.10.6 Calibration Curve in the Range of 1 μg/ml to 40 μg/ml
184(1)
6.10.7 Notes
184(1)
6.11 Cadmium Determination by Using 5,7-Dibromo - 8-Hydroxyquinoline (DBHQ)
185(3)
6.11.1 Principle
185(1)
6.11.2 Material Required
185(1)
6.11.3 Reagent Preparation
186(1)
6.11.4 Procedure
186(1)
6.11.5 Determination of Cadmium in Soil
186(1)
6.11.6 Standard Preparation
187(1)
6.11.7 Notes
188(1)
6.12 Copper Determination by Using Thio Mishler's Ketone (TMK)
188(4)
6.12.1 Principle
188(1)
6.12.2 Material Required
189(1)
6.12.3 Reagent Preparation
189(1)
6.12.4 Procedure
190(1)
6.12.5 Standard Preparation
191(1)
6.12.6 Notes
192(1)
6.13 Selenium Determination by Using Azure B and Thionin
192(5)
6.13.1 Importance of Selenium
192(1)
6.13.2 Toxicity of Selenium
192(1)
6.13.3 Principle
193(1)
6.13.4 Material Required
193(1)
6.13.5 Reagent Preparation
194(1)
6.13.6 Sample Preparation
194(1)
6.13.7 Procedure
194(1)
6.13.8 Estimation of Selenium in Soil
195(1)
6.13.9 Standard Preparation for Azure B Method
195(1)
6.13.10 Standard Preparation for Thionin B Method
196(1)
6.13.11 Notes
196(1)
6.14 Zinc Determination by Using 5, 7-Dibromo-8-Hydroxyquinoline (DBHQ)
197(3)
6.14.1 Importance of Zinc
197(1)
6.14.2 Zinc Toxicity
197(1)
6.14.3 Principle
197(1)
6.14.4 Material Required
198(1)
6.14.5 Reagent Preparation
198(1)
6.14.6 Sample Preparation
198(1)
6.14.7 Procedure
199(1)
6.14.8 Standard Preparation
199(1)
6.14.9 Notes
200(1)
6.15 Iron Determination
200(13)
6.15.1 Principle
200(1)
6.15.2 Reagent Preparation
201(1)
6.15.3 Procedure
202(1)
6.15.4 Estimation of Iron in Water
202(1)
6.15.5 Standard Preparation
203(1)
6.15.6 Notes
204(1)
References
204(9)
7 Determination of Carbonates in Environmental Samples
213(16)
7.1 Introduction
213(1)
7.2 Determination of the Calcium Carbonate (CaCO3) Content of Soil
214(2)
7.2.1 Principle
214(1)
7.2.2 Material Required
214(1)
7.2.3 Reagent Preparation
214(1)
7.2.4 Procedure
215(1)
7.2.5 Observation Table
215(1)
7.2.6 Calculations
216(1)
7.2.7 Result
216(1)
7.2.8 Notes
216(1)
7.3 Determination of the Hardness of Water
216(5)
7.3.1 Principle
216(1)
7.3.2 Some Strategies to "Soften" Hard Water
217(2)
7.3.3 Materials Required
219(1)
7.3.4 Reagent Preparation
219(1)
7.3.5 Procedure
220(1)
7.3.6 Observation Table
220(1)
7.3.7 Calculation
221(1)
7.3.8 Result
221(1)
7.4 Determination of Acidity and Total Acidity of Effluent Sample by Titrimetric Method
221(3)
7.4.1 Principle
221(1)
7.4.2 Material Required
222(1)
7.4.3 Reagent Preparation
222(1)
7.4.4 Procedure
222(1)
7.4.5 Observation Table
223(1)
7.4.6 Calculation
223(1)
7.4.7 Result
224(1)
7.5 Determination of Alkalinity and Total Alkalinity of Effluent Sample by Titrimetric Method
224(5)
7.5.1 Principle
224(1)
7.5.2 Material Required
224(1)
7.5.3 Reagent Preparation
224(1)
7.5.4 Procedure
225(1)
7.5.5 Observation Table
225(1)
7.5.6 Calculation
226(1)
7.5.7 Result
226(1)
References
226(3)
8 Microbial Examination of Potable Water
229(22)
8.1 Introduction
229(3)
8.2 Microbial Estimation in Water by Filter Disc Method
232(1)
8.2.1 Principle
232(1)
8.2.2 Material Required
232(1)
8.2.3 Reagent Preparation
232(1)
8.2.4 Procedure
232(1)
8.2.5 Result
233(1)
8.2.6 Notes
233(1)
8.3 Microbial Examination by Gram Staining
233(2)
8.3.1 Principle
233(1)
8.3.2 Material Required
234(1)
8.3.3 Procedure
234(1)
8.3.4 Result
235(1)
8.3.5 Note
235(1)
8.4 MPN (Most Probable Number) Method for Assessment of Water Quality
235(16)
8.4.1 Principle
235(1)
8.4.2 Presumptive Test
236(1)
8.4.2.1 Media Preparation (For Testing Single Water Sample)
236(1)
8.4.2.2 Procedure
237(1)
8.4.2.3 Alternative Media (For Testing Single Water Sample)
237(1)
8.4.2.4 Procedure
238(2)
8.4.2.5 Observation Table for Presumptive Test
240(5)
8.4.2.6 Results
245(1)
8.4.2.7 Note
245(1)
8.4.3 Confirmed Test
245(1)
8.4.3.1 Media Preparation for Confirmed Test
245(1)
8.4.3.2 Procedure
245(1)
8.4.3.3 Result
246(1)
8.4.4 Completed Test
246(1)
8.4.4.1 Media Preparation for Completed Test
246(1)
8.4.4.2 Procedure
246(1)
8.4.4.3 Results
247(1)
References
247(4)
Appendix I 251(2)
Appendix II 253(2)
Appendix III 255(2)
Index 257
Anshul Nigam, PhD, has completed his Masters and PhD from IIT Kanpur and IIT Bombay, respectively. He is the recipient of prestigious GATE, DBT and NDF fellowships in India and has eight years of experience in both academia and industry. He is currently associated with Amity University of Maharashtra as senior assistant professor and has received grants from industry for various projects. He has several publications in a variety of topics ranging from drug discovery to bioremediation.

Rupal Gupta is a graduate student at Amity Institute of Biotechnology, Amity University Mumbai. She received an internship in biotech and environmental start-ups and has presented her work in various national and international conferences.