Atjaunināt sīkdatņu piekrišanu

E-grāmata: Environmental Geotechnology: Meeting Challenges Through Needs-based Instrumentation

  • Formāts: 860 pages
  • Izdošanas datums: 21-Jan-2022
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814579995
  • Formāts - EPUB+DRM
  • Cena: 140,88 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 860 pages
  • Izdošanas datums: 21-Jan-2022
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789814579995

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"The rise of rapid and uncontrolled industrialization, its alarming levels of hazardous waste produced, and their negative contribution to the international environmental epidemic of global warming - in addition to the decrease in room to dispose of these wastes safely - have put the pressure for many engineers, researchers, and key decision-makers to find the answers to the constant tussle between progress and sustainability - and quickly. Environmental Geotechnology revisits existing concepts of geotechnical engineering critically, and brings them up to date with new knowledge and current affairs so as to better address and serve today's needs of the professionals. It points out the role and importance of the parameters and mechanisms that govern the interaction of contaminants with geomaterials (soil and rock mass), and also discusses their degradation in the long-run, and the consequences that follow. The book starts from a engineering philosophy that incorporates the influence of environmental effects (both manmade and natural) on geotechnical engineering practices. Its contents are based on geotechnical and environmental engineering studies pertaining to waste management, such as: the safe handling, transportation and disposal of waste, the estimation of waste leakage into the subsurface, its consequences, methods of containment, and the development of schemes to remediate contaminated land. It also proposes innovative strategies for waste management through the utilization of wastes based on a comprehensive characterization. Modelling techniques such as accelerated physical modelling using geotechnical centrifuge, finite-element or difference-based numerical modelling and physico-chemico-mineralogical modelling are discussed in this book to enablethe study of the complex (and otherwise slow) process of contaminant-geomaterial interaction"--

The rise of rapid and uncontrolled industrialization, its alarming levels of hazardous waste produced, and their negative contribution to the international environmental epidemic of global warming — in addition to the decrease in room to dispose of these wastes safely — have put the pressure for many engineers, researchers, and key decision-makers to find the answers to the constant tussle between progress and sustainability — and quickly.Environmental Geotechnology revisits existing concepts of geotechnical engineering in detail, and brings them up to date with new knowledge and current affairs so as to enable the field of Environmental Geotechnology to better address and serve today's needs. It points out the role and importance of the parameters and mechanisms that govern the interaction of contaminants with geomaterials (soil and rock mass), and also discusses their degradation in the long-run, and the consequences that follow.The book starts from a engineering philosophy that incorporates the influence of environmental effects (both manmade and natural) on geotechnical engineering practices. Its contents are based on geotechnical and environmental engineering studies pertaining to waste management, such as: the safe handling, transportation and disposal of waste, the estimation of waste leakage into the subsurface, its consequences, methods of containment, and the development of schemes to remediate contaminated land. It also proposes innovative strategies for waste management through the utilization of wastes based on a comprehensive characterization.Modelling techniques such as accelerated physical modelling, finite-element or difference-based numerical modelling, physico-chemico-mineralogical modelling, and the use of a geotechnical centrifuge are employed in this book to enable the study of the complex (and otherwise slow) process of contaminant-geomaterial interaction.
Preface vii
About the Authors xv
About the Book xix
List of Figures
xxxix
List of Plates
liii
List of Tables
lv
Chapter 1 Introduction
3(24)
1.1 Background
3(3)
1.2 Aspects of Environmental Geotechnology
6(6)
1.2.1 Sustainability
6(2)
1.2.2 Environmental aspects of long-term waste isolation
8(1)
1.2.3 Industrial byproducts characterization, reuse, and disposal
9(1)
1.2.4 Impact of climate change and natural cycles on geoenvironment
10(1)
1.2.5 Soil-air-water interaction and migration through porous media
11(1)
1.3 Characterization of Geomaterials
12(2)
1.4 Unsaturated Soil Mechanics
14(1)
1.5 Role of Alternate Energy
15(1)
1.6 Contemporary Infrastructure Development
16(2)
1.7 Role of Environmental Geotechnology in Carbon Capture
18(1)
1.8 Modelling and Instrumentation
19(1)
1.9 Contemporary Geotechnics
19(8)
References
22(5)
Chapter 2 The Nature of the Environment and Soil
27(30)
2.1 The Nature of the Environment
27(1)
2.2 The Man-made Environment
28(2)
2.3 The Nature of Soil
30(1)
2.4 Soil Texture and Horizons
31(1)
2.5 Soil Fabric and Structure
32(3)
2.6 Soil as a Living Entity
35(2)
2.7 Soil-Environment Interactions
37(2)
2.8 Factors Affecting Soil Response
39(5)
2.8.1 pH
40(1)
2.8.2 Ion exchange
41(1)
2.8.3 Sedimentation history
42(1)
2.8.4 Weathering
42(1)
2.8.5 Climate conditions, thermal and electrical effects
42(2)
2.8.6 Soil binders and reinforcement elements
44(1)
2.9 Particle-Energy-Field Theory
44(2)
2.10 Energy Fields and Soil Behaviour
46(4)
2.11 The Neo-Soil Classification
50(7)
References
53(4)
Chapter 3 Conventional- and Neo-Geomaterials
57(26)
3.1 Geomaterials
57(1)
3.2 Industrial (Waste) Byproducts
58(2)
3.3 Forms of Wastes
60(14)
3.4 Application of Industrial Waste as "Neo-Geomaterial"
74(2)
3.5 Need for a Neo-Characterization
76(7)
References
78(5)
Chapter 4 Geomaterial Characterization
83(118)
4.1 Introduction
83(1)
4.2 Mineralogical Characterization
83(3)
4.2.1 X-ray diffraction (XRD)
84(2)
4.3 Morphological Characterization
86(3)
4.3.1 Scanning electron microscopy (SEM)
86(3)
4.4 Magnetic Characterization
89(1)
4.5 Physical and Geotechnical Characterization
90(14)
4.5.1 Phase relations
91(1)
4.5.2 Particle characteristics
91(2)
4.5.3 Soft imaging system
93(1)
4.5.4 Confocal microscopy
93(1)
4.5.5 Optical microscopy
94(4)
4.5.6 Laser microscopy
98(2)
4.5.7 Laser obscuration time method (LOTM)
100(2)
4.5.8 Crushing strength
102(2)
4.6 Plasticity
104(1)
4.7 Specific Surface Area
105(12)
4.7.1 Blaine's air permeability apparatus
106(1)
4.7.2 Methylene blue absorption technique
107(3)
4.7.3 Nitrogen gas adsorption technique
110(2)
4.7.4 Ethylene glycol monoethyl ether absorption method
112(2)
4.7.5 MIP
114(1)
4.7.6 Air adsorption method
115(2)
4.8 Specific Gravity
117(1)
4.9 Water Content
117(1)
4.10 Porosity and Void Ratio
118(1)
4.11 Pore-Size Distribution Characteristics
119(2)
4.12 Loss on Ignition (LOI)
121(1)
4.13 Thermal Characterization
121(5)
4.13.1 Coefficient of thermal expansion (CTE)
121(1)
4.13.2 TGA
122(2)
4.13.3 DTA
124(1)
4.13.4 Differential scanning calorimeter (DSC)
125(1)
4.14 Compaction Characteristics
126(1)
4.15 Dry Density
126(1)
4.16 Volume Change Characteristics
127(1)
4.17 Collapse Potential (CP)
128(1)
4.18 Shrinkage, Swelling, and Cracking Characteristics
128(7)
4.18.1 Correlation with suction
130(2)
4.18.2 Desiccation studies in the environmental chamber
132(3)
4.19 Indentation of Geomaterials
135(9)
4.19.1 Nanoindentation
135(7)
4.19.2 Penetration resistance
142(2)
4.20 Compression and Consolidation
144(2)
4.21 Hydraulic Conductivity
146(1)
4.22 Soil Water Retention
147(1)
4.23 Unsaturated Soil Properties
147(1)
4.24 Shear Strength Characteristics
148(1)
4.25 Application of Shear Wave Velocity
149(14)
4.26 Electrical Properties
163(1)
4.26.1 Electrical conductivity and resistivity
163(1)
4.26.2 Dielectric constant
164(1)
4.27 Chemical Characterization
164(14)
4.27.1 pH
164(1)
4.27.2 Ion exchange capacity
165(1)
4.27.3 Sorption and desorption characteristics
166(1)
4.27.4 Zeta potential
167(1)
4.27.5 Pore-solution characteristics
168(1)
4.27.6 Filterable and non-filterable matters
168(1)
4.27.7 Leaching characteristics
168(1)
4.27.8 TDS, SAR, ESP, BOD, and COD
169(1)
4.27.9 Redox potential
170(1)
4.27.10 Corrosion potential
170(1)
4.27.11 Chemical composition
171(1)
4.27.11.1 X-ray fluorescence technique
171(1)
4.27.11.2 Energy-dispersive X-ray spectroscopy (EDS)
172(1)
4.27.12 Lime reactivity
172(3)
4.27.13 Pozzolanic activity Index
175(2)
4.27.14 CHNS (carbon, hydrogen, nitrogen, and sulphur) analysis
177(1)
4.27.15 Fourier transform infrared spectrometer (FTIR)
177(1)
4.28 Thermal Characterization
178(1)
4.29 Biological Characteristics
179(22)
References
182(19)
Chapter 5 Geoenvironmental Centrifuge Modelling
201(60)
5.1 Introduction
201(4)
5.2 The Basics of Centrifuge Modelling
205(1)
5.3 Similitude in Centrifuge Modelling
205(2)
5.4 Centrifuge Scaling Relations
207(5)
5.4.1 Scaling factor for linear dimensions
207(1)
5.4.2 Scaling factor for hydraulic conductivity
208(1)
5.4.3 Scaling factors for pure conduction
209(2)
5.4.4 Scaling factors for the free convection
211(1)
5.4.5 Scaling factors for contaminant transport processes
211(1)
5.5 Dimensionless Numbers
212(2)
5.5.1 Reynolds number
212(2)
5.5.2 Rayleigh number
214(1)
5.6 Determination of Acceleration Level (N)
214(1)
5.7 Pressure Acting on the Specimen Due to Centrifugation
214(2)
5.8 Modelling of Models
216(1)
5.9 Advantages of Centrifuge Modelling
216(1)
5.10 Limitations of Centrifuge Modelling
217(1)
5.11 Modelling the Mechanisms that Occur in the Geoenvironment
217(33)
5.11.1 Moisture migration (i.e., advection) modelling
218(6)
5.11.2 Experimental investigations
224(5)
5.11.3 Salt water intrusion through clay liners (diffusion)
229(2)
5.11.4 Experimental investigations
231(2)
5.11.5 Solute transport mechanisms
233(4)
5.11.6 Hydraulic conductivity
237(1)
5.11.7 The Setup for highly permeable geomaterials
238(2)
5.11.8 The setup for less permeable geomaterials
240(1)
5.11.9 Experimental investigations
241(4)
5.11.9.1 Validity of Darcy's law for centrifuge specimens
245(1)
5.11.9.2 The effect of specimen size on hydraulic conductivity
245(5)
5.12 Scaling Relationship for Hydraulic Conductivity
250(11)
References
252(9)
Chapter 6 Contaminant Transport in Saturated Soils
261(62)
6.1 Introduction
261(3)
6.2 Contaminant Transport Mechanisms
264(8)
6.3 Modelling of Contaminant Transport
272(15)
6.3.1 Mathematical models
272(3)
6.3.2 Column tests
275(5)
6.3.3 Centrifuge tests
280(7)
6.4 Experimental Setup
287(4)
6.4.1 Centrifuge test setup
288(1)
6.4.2 Column (1 g) tests
289(2)
6.5 Instrumentation for the Detection of Contaminants in Geomaterials
291(5)
6.5.1 The geomaterial conductivity meter: General description
292(2)
6.5.1.1 Sinusoidal voltage source
294(1)
6.5.1.2 Bridge network
294(1)
6.5.1.3 Instrumentation amplifier
294(2)
6.5.1.4 Demodulator circuit
296(1)
6.5.1.5 Voltage Level shifter
296(1)
6.6 Methodology for Contaminant(s) Detection in the Specimen
296(16)
6.6.1 The miniature compactor
296(4)
6.6.2 Calibration of the geomaterial conductivity meter
300(4)
6.6.3 Centrifuge tests
304(4)
6.6.3.1 "Modelling of models" of the specimens
308(1)
6.6.4 Column tests
308(4)
6.7 Concluding Remarks and Way Forward
312(11)
References
312(11)
Chapter 7 Contaminant Transport in Unsaturated Soils
323(152)
7.1 Introduction
323(2)
7.2 Unsaturated State of Soils
325(2)
7.3 Parameters Influencing Suction
327(3)
7.4 Some Important Facts/Relationships for Unsaturated Soils
330(1)
7.5 Suction Measurement: Direct Methods
331(19)
7.5.1 Insertion tensiometer
331(7)
7.5.2 Pressure plate apparatus
338(6)
7.5.3 The dewpoint potentiameter
344(3)
7.5.4 The AquaSorp® isotherm generator
347(3)
7.6 Suction Measurement: Indirect Methods
350(4)
7.7 The SWCC
354(10)
7.7.1 Alternate techniques for establishing the SWCC
358(6)
7.8 Estimation of Unsaturated Soil Hydraulic Conductivity
364(6)
7.8.1 Empirical relationships
366(2)
7.8.2 Applications of the SWCC
368(2)
7.9 Creating Unsaturated State of the Specimen
370(31)
7.9.1 By centrifugation
370(12)
7.9.2 By imposition of thermal flux
382(10)
7.9.3 By controlled pressurization (with PME)
392(8)
7.9.4 Comparison of the results obtained from different techniques
400(1)
7.10 Contaminant Transport: Mechanisms Prevailing in Unsaturated Soils
401(38)
7.10.1 Determination of diffusion coefficient
417(11)
7.10.2 Pore solution extraction
428(3)
7.10.3 Determination of osmotic suction
431(1)
7.10.3.1 Method 1
432(2)
7.10.3.2 Method 2
434(5)
7.11 Lysimetric Studies
439(36)
References
449(26)
Chapter 8 Contaminant Transport in Intact Rock Mass
475(80)
8.1 Introduction
475(1)
8.2 Basic Mechanisms
476(3)
8.2.1 Surface diffusion
477(1)
8.2.2 Molecular diffusion
478(1)
8.2.3 Vapour phase diffusion (in vadose zone)
478(1)
8.2.4 Matrix diffusion
479(1)
8.3 Diffusion Characteristics: Basics
479(4)
8.3.1 Steady-state diffusion
480(1)
8.3.2 Unsteady-state diffusion
481(1)
8.3.3 Determination of diffusion characteristics
482(1)
8.4 Factors Influencing Diffusion Characteristics
483(4)
8.4.1 Tortuosity
484(1)
8.4.2 Hydraulic conductivity
485(1)
8.4.3 Contaminant concentration
485(1)
8.4.4 Weathering
485(1)
8.4.5 Adsorption
485(1)
8.4.6 Pore structure
486(1)
8.4.7 Pore-size distribution
486(1)
8.4.8 Pore connectivity
486(1)
8.4.9 Confining pressure
487(1)
8.4.10 Colloidal particles
487(1)
8.5 State-of-the-Art
487(22)
8.5.1 Conventional diffusion tests
487(13)
8.5.2 Accelerated diffusion tests
500(9)
8.6 Experimental Investigations: Needs-based Instrumentation
509(16)
8.6.1 Type-I diffusion cell
510(1)
8.6.2 Type-II diffusion cell
511(2)
8.6.3 Type-III diffusion cell
513(1)
8.6.4 Specimen and contaminant solution preparation
514(3)
8.6.5 Measurement of diffused chloride ion concentration
517(1)
8.6.5.1 EC method
517(7)
8.6.5.2 Ion chromatograph method
524(1)
8.7 Computation of Diffusion Coefficient
525(14)
8.7.1 Fractured rock mass
525(2)
8.7.2 Intact rock mass
527(6)
8.7.3 Accelerated diffusion tests (Type-III diffusion cell)
533(6)
8.8 Determination of Sorption-Desorption Parameters
539(3)
8.9 Concluding Remarks and the Way Forward
542(13)
References
543(12)
Chapter 9 Heat Migration in Geomaterials
555(112)
9.1 Introduction
555(1)
9.2 Thermal Properties of Geomaterials
556(15)
9.2.1 Thermal properties of soils
557(1)
9.2.1.1 Heat of wetting
557(2)
9.2.1.2 Thermal conductivity
559(1)
9.2.1.3 Specific heat capacity
560(1)
9.2.1.4 Thermal resistivity
561(2)
9.2.1.5 Miscellaneous studies
563(3)
9.2.2 Thermal properties of rocks
566(1)
9.2.3 Factors affecting thermal properties
567(1)
9.2.3.1 Geomaterial type
568(1)
9.2.3.2 Moisture content
568(1)
9.2.3.3 Presence of salts in pores/pore solution
568(1)
9.2.3.4 Temperature and pressure
569(1)
9.2.3.5 Grain-size distribution and packing density
569(1)
9.2.3.6 Seasonal variations
569(1)
9.2.3.7 Presence of contaminants
570(1)
9.2.3.8 Anisotropy
570(1)
9.2.3.9 Method of measurement
570(1)
9.3 Modelling Heat and Moisture Migration
571(8)
9.4 Determination of Thermal Properties of Geomaterials
579(3)
9.4.1 Transient heat method
579(3)
9.5 Determination of Thermal Properties: Needs-based Instrumentation
582(22)
9.5.1 Laboratory thermal probe
583(1)
9.5.1.1 Calibration of the thermal probe for soils and admixtures
584(3)
9.5.1.2 Calibration of the thermal probe for rocks
587(1)
9.5.2 Field thermal probe
588(7)
9.5.3 The thermal property detector (THERMODET)
595(9)
9.6 Heat Migration in Geomaterials: Centrifuge Modelling
604(27)
9.6.1 Centrifuge modelling
606(13)
9.6.2 Heat migration in geomaterials: Thermal flux method (TFM)
619(12)
9.7 Thermally Induced Volumetric Change
631(8)
9.7.1 Mechanisms governing TIVC
632(1)
9.7.1.1 Mechanism A
632(1)
9.7.1.2 Mechanism B
633(1)
9.7.1.3 Mechanism C
633(1)
9.7.1.4 Mechanism D
634(1)
9.7.2 Effect of temperature on soil properties
634(1)
9.7.2.1 Pre-consolidation pressure
634(1)
9.7.2.2 Coefficient of consolidation and compression Index
635(1)
9.7.2.3 Shear strength
635(1)
9.7.3 Factors affecting TIVC
636(3)
9.8 Thermal Stresses on Geomaterials
639(6)
9.8.1 Computation of normal stress and shear stress
643(2)
9.9 Determination of the Heat of Wetting
645(22)
References
649(18)
Chapter 10 Response of Geomaterials to Electromagnetic Field
667(130)
10.1 Introduction
667(1)
10.2 Historical Background
668(1)
10.3 Electrical Properties of Geomaterials
669(9)
10.3.1 Electrical conductivity and dielectric constant
669(6)
10.3.2 Impedance
675(3)
10.4 Parameters Influencing Electrical Properties
678(3)
10.4.1 Pore continuity
679(1)
10.4.2 Water content
679(1)
10.4.3 Salinity level
679(1)
10.4.4 Cation exchange capacity
679(1)
10.4.5 Temperature
679(1)
10.4.6 Frequency of current
680(1)
10.5 Methods for Determining Electrical Properties
681(27)
10.5.1 Two- and four-electrode methods
681(6)
10.5.2 Time-domain reflectometry
687(12)
10.5.3 Capacitance sensing technique
699(5)
10.5.4 Electromagnetic techniques
704(1)
10.5.5 Neutron probe
705(1)
10.5.6 Empirical relationships
706(2)
10.6 Flow of Current in Geomaterials: Basic Models
708(8)
10.6.1 Micro-geometrical model
712(1)
10.6.2 Permeability model
713(1)
10.6.3 Dielectric model
713(3)
10.7 Applications of Electrical Properties
716(16)
10.7.1 Porosity
719(1)
10.7.2 Water content and degree of saturation
720(2)
10.7.3 Permeability
722(2)
10.7.4 Consolidation characteristics
724(1)
10.7.5 Swelling potential
724(1)
10.7.6 Liquefaction potential
725(1)
10.7.7 Electrokinetic remediation
725(1)
10.7.8 Hygroscopic moisture content
726(3)
10.7.9 Assessment of corrosion potential
729(3)
10.8 Needs-Based Instrumentation for Measuring Electrical Properties
732(27)
10.8.1 Low-frequency measurements
732(1)
10.8.1.1 Electrical resistivity box
732(2)
10.8.1.2 Electrical resistivity probe
734(5)
10.8.1.3 Determination of geomaterial resistivity
739(3)
10.8.1.4 Relationship between the electrical and thermal resistivities
742(3)
10.8.2 High-frequency measurements
745(1)
10.8.2.1 Application of LCR meter and impedance analyzer
745(3)
10.8.2.2 The specimen cell, SC-I
748(8)
10.8.2.3 The specimen cell, SC-FG
756(2)
10.8.2.4 The specimen cell, SC-GG
758(1)
10.9 Generalized Archie's Law for Geomaterials
759(10)
10.9.1 Conductivity of the pore solution
766(3)
10.10 Equivalent Circuits
769(28)
References
775(22)
Index 797