Atjaunināt sīkdatņu piekrišanu

E-grāmata: Equidistribution and Counting Under Equilibrium States in Negative Curvature and Trees: Applications to Non-Archimedean Diophantine Approximation

  • Formāts: PDF+DRM
  • Sērija : Progress in Mathematics 329
  • Izdošanas datums: 16-Dec-2019
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030183158
  • Formāts - PDF+DRM
  • Cena: 142,16 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Progress in Mathematics 329
  • Izdošanas datums: 16-Dec-2019
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030183158

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial treesagain without the need for any compactness or torsionfree assumptions.







In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms.







One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.

Recenzijas

"The work under review is a beautiful and very thorough exploration ... . The theorems are stated in great generality, and whenever possible, with explicit error terms in asymptotics of counting/equidistribution, which is very useful in applications." (Jayadev S. Athreya, Mathematical Reviews, April, 2021)

1 Introduction
1.1 Geometric and dynamical tools
2(4)
1.2 The distribution of common perpendiculars
6(5)
1.3 Counting in weighted graphs of groups
11(4)
1.4 Selected arithmetic applications
15(4)
1.5 General notation
19(4)
PART I Geometry and Dynamics in Negative Curvature
2 Negatively Curved Geometry
2.1 Background on CAT(---1) spaces
23(6)
2.2 Generalised geodesic lines
29(2)
2.3 The unit tangent bundle
31(5)
2.4 Normal bundles and dynamical neighbourhoods
36(4)
2.5 Creating common perpendiculars
40(1)
2.6 Metric and simplicial trees, and graphs of groups
41(8)
Discrete-time geodesic flow on trees
43(1)
Cross-ratios of ends of trees
44(1)
Bass-Serre's graphs of groups
44(5)
3 Potentials, Critical Exponents, and Gibbs Cocycles
3.1 Background on (uniformly local) Holder continuity
49(16)
3.2 Potentials
65(5)
3.3 Poincare series and critical exponents
70(4)
3.4 Gibbs cocycles
74(5)
3.5 Systems of conductances on trees and generalised electrical networks
79(4)
4 Patterson--Sullivan and Bowen--Margulis Measures with Potential on CAT(---1) Spaces
4.1 Patterson densities
83(4)
4.2 Gibbs measures
87(1)
The Gibbs property of Gibbs measures
88(1)
The Hopf--Tsuji--Sullivan--Roblin theorem
89(1)
On the finiteness of Gibbs measures
90(2)
Bowen--Margulis measure computations in locally symmetric spaces
92(3)
On the cohomological invariance of Gibbs measures
95(2)
4.3 Patterson densities for simplicial trees
97(3)
4.4 Gibbs measures for metric and simplicial trees
100(11)
5 Symbolic Dynamics of Geodesic Flows on Trees
5.1 Two-sided topological Markov shifts
111(1)
5.2 Coding discrete-time geodesic flows on simplicial trees
112(13)
5.3 Coding continuous-time geodesic flows on metric trees
125(7)
5.4 The variational principle for metric and simplicial trees
132(9)
6 Random Walks on Weighted Graphs of Groups
6.1 Laplacian operators on weighted graphs of groups
141(6)
6.2 Patterson densities as harmonic measures for simplicial trees
147(8)
7 Skinning Measures with Potential on CAT(---1) Spaces
7.1 Skinning measures
155(10)
7.2 Equivariant families of convex subsets and their skinning measures
165(5)
8 Explicit Measure Computations for Simplicial Trees and Graphs of Groups
8.1 Computations of Bowen-Margulis measures for simplicial trees
170(5)
8.2 Computations of skinning measures for simplicial trees
175(6)
9 Rate of Mixing for the Geodesic Flow
9.1 Rate of mixing for Riemannian manifolds
181(1)
9.2 Rate of mixing for simplicial trees
182(12)
9.3 Rate of mixing for metric trees
194(13)
PART II Geometric Equidistribution and Counting
10 Equidistribution of Equidistant Level Sets to Gibbs Measures
10.1 A general equidistribution result
207(6)
10.2 Rate of equidistribution of equidistant level sets for manifolds
213(2)
10.3 Equidistribution of equidistant level sets on simplicial graphs and random walks on graphs of groups
215(5)
10.4 Rate of equidistribution for metric and simplicial trees
220(8)
11 Equidistribution of Common Perpendicular Arcs
11.1 Part I of the proof of Theorem 11.1: The common part
228(2)
11.2 Part II of the proof of Theorem 11.1: The metric tree case
230(4)
11.3 Part III of the proof of Theorem 11.1: The manifold case
234(8)
11.4 Equidistribution of common perpendiculars in simplicial trees
242(12)
12 Equidistribution and Counting of Common Perpendiculars in Quotient Spaces
12.1 Multiplicities and counting functions in Riemannian orbifolds
254(2)
12.2 Common perpendiculars in Riemannian orbifolds
256(4)
12.3 Error terms for equidistribution and counting for Riemannian orbifolds
260(4)
12.4 Equidistribution and counting for quotient simplicial and metric trees
264(7)
12.5 Counting for simplicial graphs of groups
271(7)
12.6 Error terms for equidistribution and counting for metric and simplicial graphs of groups
278(9)
13 Geometric Applications
13.1 Orbit counting in conjugacy classes for groups acting on trees
287(4)
13.2 Equidistribution and counting of closed orbits on metric and simplicial graphs (of groups)
291(8)
PART III Arithmetic Applications
14 Fields with Discrete Valuations
14.1 Local fields and valuations
299(2)
14.2 Global function fields
301(6)
15 Bruhat--Tits Trees and Modular Groups
15.1 Bruhat--Tits trees
307(4)
15.2 Modular graphs of groups
311(2)
15.3 Computations of measures for Bruhat--Tits trees
313(5)
15.4 Exponential decay of correlation and error terms for arithmetic quotients of Bruhat--Tits trees
318(7)
15.5 Geometrically finite lattices with infinite Bowen--Margulis measure
325(4)
16 Equidistribution and Counting of Rational Points in Completed Function Fields
16.1 Counting and equidistribution of non-Archimedean Farey fractions
329(9)
16.2 Mertens's formula in function fields
338(4)
17 Equidistribution and Counting of Quadratic Irrational Points in Non-Archimedean Local Fields
17.1 Counting and equidistribution of loxodromic fixed points
342(4)
17.2 Counting and equidistribution of quadratic irrationals in positive characteristic
346(8)
17.3 Counting and equidistribution of quadratic irrationals in Qp
354(8)
18 Equidistribution and Counting of Cross-ratios
18.1 Counting and equidistribution of cross-ratios of loxodromic fixed points
362(6)
18.2 Counting and equidistribution of cross-ratios of quadratic irrationals
368(3)
19 Equidistribution and Counting of Integral Representations by Quadratic Norm Forms
371(6)
Appendix: A Weak Gibbs Measure is the Unique Equilibrium
J. Buzzi
A.1 Introduction
377(4)
A.2 Proof of the main result, Theorem A.4
381(6)
List of Symbols 387(8)
Bibliography 395(14)
Index 409