|
Part I Thermodynamics, Statistical Mechanical Models and Phase Transitions |
|
|
|
|
5 | (8) |
|
1.1 Formulae and Variables |
|
|
5 | (3) |
|
1.2 The Field-Density Representation |
|
|
8 | (1) |
|
1.3 The Thermodynamic Limit |
|
|
9 | (1) |
|
1.4 Particular Response Functions |
|
|
10 | (3) |
|
|
11 | (1) |
|
|
11 | (2) |
|
|
13 | (16) |
|
|
13 | (3) |
|
|
14 | (1) |
|
2.1.2 The Connection to Thermodynamics |
|
|
15 | (1) |
|
2.2 Variations of the Probability Function |
|
|
16 | (1) |
|
2.3 Coupling Representations |
|
|
17 | (4) |
|
|
19 | (2) |
|
|
21 | (2) |
|
2.4.1 Site-Variable Models |
|
|
22 | (1) |
|
2.4.2 Edge-Variable Models |
|
|
22 | (1) |
|
2.5 Correlation Functions and Symmetry Properties |
|
|
23 | (6) |
|
2.5.1 A General Hamiltonian |
|
|
23 | (1) |
|
2.5.2 Correlation Functions |
|
|
24 | (2) |
|
2.5.3 Symmetry Properties |
|
|
26 | (3) |
|
|
29 | (60) |
|
3.1 Upper and Lower Critical Dimensions |
|
|
29 | (1) |
|
3.2 The Quantum Heisenberg Model |
|
|
30 | (3) |
|
3.2.1 One-Dimensional Chains |
|
|
31 | (2) |
|
3.3 Classical Vector Models |
|
|
33 | (1) |
|
3.4 The Gaussian and Spherical Models |
|
|
34 | (2) |
|
|
36 | (9) |
|
3.5.1 The Spin-1/3=2 Ising Model |
|
|
36 | (8) |
|
3.5.2 The Spin-1 Ising Model |
|
|
44 | (1) |
|
3.6 State-Difference Models |
|
|
45 | (12) |
|
3.6.1 The Classical XY Model |
|
|
45 | (8) |
|
3.6.2 The Ashkin--Teller Model |
|
|
53 | (1) |
|
|
54 | (1) |
|
3.6.4 The Standard Potts Model |
|
|
55 | (2) |
|
|
57 | (3) |
|
3.7.1 Chiral Potts Models |
|
|
58 | (1) |
|
3.7.2 An Extended 3-State Potts Model on the Triangular Lattice |
|
|
59 | (1) |
|
|
60 | (20) |
|
3.8.1 The Eight-Vertex Model |
|
|
61 | (11) |
|
3.8.2 The Six-Vertex Model |
|
|
72 | (8) |
|
|
80 | (9) |
|
3.9.1 The Modified KDP Model Equivalence |
|
|
83 | (2) |
|
3.9.2 The Ising Model Equivalence |
|
|
85 | (4) |
|
4 Phase Transitions and Scaling Theory |
|
|
89 | (80) |
|
4.1 The Geometry of Phase Transitions |
|
|
89 | (5) |
|
4.1.1 A Two-Dimensional Phase Space |
|
|
90 | (3) |
|
4.1.2 A Three-Dimensional Phase Space |
|
|
93 | (1) |
|
4.2 Universality, Fluctuations and Scaling |
|
|
94 | (6) |
|
|
95 | (2) |
|
4.2.2 Scaling for the Ising Model |
|
|
97 | (3) |
|
4.3 General Scaling Formulation |
|
|
100 | (22) |
|
4.3.1 The Kadanoff Scaling Hypothesis |
|
|
100 | (4) |
|
4.3.2 First-Order Transitions |
|
|
104 | (1) |
|
4.3.3 Effective Exponents |
|
|
105 | (4) |
|
4.3.4 The Nightingale--'T Hooft Scaling Hypothesis |
|
|
109 | (1) |
|
4.3.5 Constraints on Scaling |
|
|
110 | (5) |
|
4.3.6 Scaling Operators and Dimensions |
|
|
115 | (3) |
|
4.3.7 Correlation Functions |
|
|
118 | (1) |
|
4.3.8 Variable Scaling Exponents |
|
|
119 | (2) |
|
4.3.9 Densities and Response Functions |
|
|
121 | (1) |
|
4.4 Critical Point and Coexistence Curve |
|
|
122 | (3) |
|
|
124 | (1) |
|
4.4.2 Exponent Inequalities |
|
|
125 | (1) |
|
4.5 Scaling for a Critical Point |
|
|
125 | (11) |
|
4.5.1 Scaling Fields for the Critical Point |
|
|
126 | (2) |
|
4.5.2 Approaches to the Critical Point |
|
|
128 | (1) |
|
4.5.3 Experimental Variables |
|
|
129 | (1) |
|
4.5.4 The Density and Response Functions |
|
|
130 | (1) |
|
|
131 | (1) |
|
4.5.6 Critical Exponents and Scaling Laws |
|
|
132 | (2) |
|
4.5.7 Correlation Scaling at a Critical Point |
|
|
134 | (2) |
|
|
136 | (5) |
|
4.7 Scaling for a Tricritical Point |
|
|
141 | (5) |
|
4.7.1 Scaling Fields for the Tricritical Point |
|
|
141 | (2) |
|
4.7.2 Tricritical Exponents and Scaling Laws |
|
|
143 | (3) |
|
4.8 Corrections to Scaling |
|
|
146 | (2) |
|
4.9 Scaling and Universality |
|
|
148 | (4) |
|
|
152 | (7) |
|
4.10.1 The Finite-Size Scaling Field |
|
|
153 | (2) |
|
4.10.2 The Shift and Rounding Exponents |
|
|
155 | (2) |
|
4.10.3 Universality and Finite-Size Scaling |
|
|
157 | (2) |
|
4.11 Conformal Invariance |
|
|
159 | (10) |
|
4.11.1 From Scaling to the Conformal Group |
|
|
159 | (1) |
|
4.11.2 Correlation Functions for d ≥ 2 |
|
|
159 | (2) |
|
4.11.3 Universal Amplitudes for d = 2 |
|
|
161 | (2) |
|
4.11.4 Schramm-Loewner Evolution |
|
|
163 | (6) |
|
Part II Classical Approximation Methods |
|
|
|
5 Phenomenological Theory and Landau Expansions |
|
|
169 | (36) |
|
|
169 | (6) |
|
5.1.1 A First-Order Transition |
|
|
171 | (3) |
|
|
174 | (1) |
|
5.2 The Van der Waals Equation |
|
|
175 | (1) |
|
5.3 Landau Expansions with One Order Parameter |
|
|
176 | (7) |
|
5.3.1 The Spin-1/2 Ising Model |
|
|
182 | (1) |
|
5.4 Landau Expansions with Two Order Parameters |
|
|
183 | (5) |
|
5.4.1 The Spin-1 Ising Model |
|
|
183 | (1) |
|
5.4.2 The 3-State Potts Model |
|
|
184 | (4) |
|
5.5 Landau Theory for a Tricritical Point |
|
|
188 | (5) |
|
5.5.1 Tricritical Exponents |
|
|
190 | (3) |
|
5.6 Ginzburg-Landau Theory |
|
|
193 | (12) |
|
|
193 | (1) |
|
5.6.2 The Gaussian Approximation |
|
|
194 | (3) |
|
5.6.3 Gaussian Critical Exponents |
|
|
197 | (8) |
|
|
205 | (24) |
|
6.1 The Ising Ferromagnet |
|
|
205 | (7) |
|
6.1.1 Mean-Field Fluctuations |
|
|
209 | (3) |
|
6.2 A Model for Metamagnetism |
|
|
212 | (17) |
|
6.2.1 The Paramagnetic State |
|
|
215 | (1) |
|
6.2.2 The Antiferromagnetic State |
|
|
216 | (1) |
|
6.2.3 A Neighbourhood of the Critical Curve |
|
|
217 | (4) |
|
6.2.4 The First-Neighbour Antiferromagnet: λ = 0 |
|
|
221 | (2) |
|
6.2.5 The First-Order Transition |
|
|
223 | (3) |
|
6.2.6 A Neighbourhood of the Tricritical Point |
|
|
226 | (3) |
|
7 Cluster-Variation Methods |
|
|
229 | (30) |
|
7.1 Improving Mean-Field Theory |
|
|
229 | (2) |
|
7.2 The KHDeB Hierarchy of Approximations |
|
|
231 | (8) |
|
7.2.1 Distribution Numbers |
|
|
231 | (2) |
|
7.2.2 Extensive Quantities |
|
|
233 | (2) |
|
7.2.3 The Hamiltonian and Free Energy |
|
|
235 | (1) |
|
|
235 | (2) |
|
|
237 | (1) |
|
7.2.6 Labelling Configurations |
|
|
238 | (1) |
|
7.3 The Bethe-Pair Approximation for the Ising Model |
|
|
239 | (2) |
|
7.4 Reduction to the Mean-Field Approximation |
|
|
241 | (2) |
|
7.5 3-State Potts Model on a Triangular Lattice |
|
|
243 | (3) |
|
7.6 A Lattice Model for Fluid Water |
|
|
246 | (13) |
|
|
|
|
259 | (24) |
|
8.1 The Thermodynamic Limit |
|
|
259 | (2) |
|
8.2 The Infinite-System Approach |
|
|
261 | (2) |
|
8.3 Lower Bounds for Phase Transitions: The Peierls Method |
|
|
263 | (8) |
|
8.3.1 The Simple Lattice Fluid |
|
|
269 | (2) |
|
8.4 Grand Partition Function Zeros and Phase Transitions |
|
|
271 | (12) |
|
|
273 | (3) |
|
8.4.2 The Yang--Lee Circle Theorem |
|
|
276 | (3) |
|
8.4.3 Systems with Pair Interactions |
|
|
279 | (4) |
|
|
283 | (28) |
|
|
283 | (1) |
|
9.2 The Wegner Transformation |
|
|
284 | (9) |
|
9.2.1 Duality for the v-State Potts Model |
|
|
286 | (4) |
|
9.2.2 Duality for the Spin-1 Ising Model |
|
|
290 | (1) |
|
9.2.3 The Weak-Graph Transformation |
|
|
291 | (2) |
|
9.3 The Regular Square-Lattice Eight-Vertex Model |
|
|
293 | (11) |
|
9.3.1 Symmetry Properties and Transformations |
|
|
294 | (3) |
|
9.3.2 The Case of Region I |
|
|
297 | (4) |
|
9.3.3 Regions and Variables |
|
|
301 | (3) |
|
9.4 The Star-Triangle Transformation |
|
|
304 | (7) |
|
9.4.1 The v-State Potts Model |
|
|
306 | (1) |
|
9.4.2 The Spin-1/2 Ising Model |
|
|
307 | (4) |
|
10 Edge-Decorated Ising Models |
|
|
311 | (34) |
|
10.1 Primary and Secondary Sites |
|
|
311 | (1) |
|
10.2 Super-Exchange or Bond-Dilution |
|
|
312 | (7) |
|
10.2.1 Critical Properties and Exponent Renormalization |
|
|
314 | (5) |
|
|
319 | (5) |
|
10.3.1 The Zero-Field Axis |
|
|
320 | (2) |
|
|
322 | (2) |
|
10.4 A Competing-Interaction Magnetic Model |
|
|
324 | (2) |
|
10.5 Decoration with Orientable Molecules |
|
|
326 | (6) |
|
10.6 A Decorated Lattice Fluid |
|
|
332 | (13) |
|
10.6.1 Case I: A Single Vapour/Liquid Transition |
|
|
335 | (2) |
|
10.6.2 Case II: A Water-Like Model |
|
|
337 | (2) |
|
10.6.3 Case III: Maxithermal, Critical Double and Cuspoidal Points |
|
|
339 | (6) |
|
11 Transfer Matrices: Incipient Phase Transitions |
|
|
345 | (36) |
|
11.1 The Transfer Matrix Formulation |
|
|
345 | (8) |
|
|
346 | (1) |
|
11.1.2 The Partition Function |
|
|
347 | (1) |
|
11.1.3 Correlation Functions and Lengths |
|
|
348 | (5) |
|
11.2 Incipient Phase Transitions |
|
|
353 | (1) |
|
11.3 Using Symmetry Properties |
|
|
354 | (13) |
|
11.3.1 Block-Diagonalization of the Transfer Matrix |
|
|
355 | (4) |
|
|
359 | (8) |
|
11.4 Analysis in the Complex Plane: The Wood Method |
|
|
367 | (14) |
|
11.4.1 Evolution of Partition Function Zeros |
|
|
367 | (2) |
|
11.4.2 Connection Curves and Cross-Block Curves |
|
|
369 | (3) |
|
11.4.3 The Spin-1/2 Square-Lattice Ising Model |
|
|
372 | (4) |
|
11.4.4 Critical Points and Exponents |
|
|
376 | (5) |
|
12 Transfer Matrices: Exactly Solved Models |
|
|
381 | (114) |
|
12.1 A General Eight-Vertex Model |
|
|
381 | (13) |
|
12.1.1 A Generalized Star-Triangle Transformation |
|
|
382 | (1) |
|
12.1.2 The Solution to the GST Transformation and the Elliptic Variable Formulation |
|
|
383 | (4) |
|
|
387 | (4) |
|
12.1.4 Edge Variables and Matrix Formulation |
|
|
391 | (2) |
|
12.1.5 Square-Lattice Models |
|
|
393 | (1) |
|
12.2 Square-Lattice Ising Models |
|
|
394 | (37) |
|
12.2.1 The Modified Checkerboard Ising Model |
|
|
399 | (4) |
|
12.2.2 Properties of the Transfer Matrices |
|
|
403 | (4) |
|
12.2.3 The Reduction to Regular Ising Models |
|
|
407 | (2) |
|
12.2.4 Transfer Matrix Eigenvectors |
|
|
409 | (1) |
|
12.2.5 Notational Changes |
|
|
410 | (2) |
|
12.2.6 Transfer Matrix Eigenvalues |
|
|
412 | (9) |
|
12.2.7 The Standard Model |
|
|
421 | (10) |
|
12.3 The Square-Lattice Eight-Vertex Model |
|
|
431 | (64) |
|
12.3.1 The Low-Temperature Zone RL(I) |
|
|
431 | (2) |
|
12.3.2 The Low-Temperature Zone RL(III) |
|
|
433 | (1) |
|
12.3.3 The Transfer Matrix |
|
|
434 | (3) |
|
12.3.4 Analysis in Terms of Pauli Matrices |
|
|
437 | (5) |
|
12.3.5 Analysis of the Transfer Matrix |
|
|
442 | (5) |
|
|
447 | (28) |
|
12.3.7 The Free Energy and Magnetization |
|
|
475 | (3) |
|
12.3.8 Critical Behaviour |
|
|
478 | (4) |
|
12.3.9 The Coupling Form and the Ising Model Limit |
|
|
482 | (3) |
|
12.3.10 The Six-Vertex Model |
|
|
485 | (6) |
|
12.3.11 The Eight-Vertex Model and Universality |
|
|
491 | (4) |
|
|
495 | (26) |
|
13.1 The Dimer Partition Function |
|
|
495 | (1) |
|
13.2 Superposition Polynomials and Pfaffians |
|
|
496 | (14) |
|
13.2.1 The Square-Lattice Case |
|
|
500 | (4) |
|
13.2.2 The Honeycomb-Lattice Case |
|
|
504 | (6) |
|
13.3 Vertex and Ising Model Equivalences |
|
|
510 | (4) |
|
13.3.1 The Five-Vertex Model |
|
|
510 | (2) |
|
13.3.2 The Honeycomb-Lattice Anisotropic Ising Model |
|
|
512 | (2) |
|
13.4 K-Type and O-Type Transitions |
|
|
514 | (7) |
|
Part IV Series and Renormalization Group Methods |
|
|
|
|
521 | (46) |
|
14.1 The Task and the Methods |
|
|
521 | (3) |
|
|
524 | (12) |
|
14.2.1 At Low Temperatures |
|
|
525 | (5) |
|
14.2.2 At High Temperatures |
|
|
530 | (4) |
|
14.2.3 Duality for Graphs |
|
|
534 | (2) |
|
|
536 | (4) |
|
14.3.1 The Low-Temperature Case |
|
|
539 | (1) |
|
14.3.2 The High-Temperature Case |
|
|
539 | (1) |
|
14.4 The Finite-Cluster Method |
|
|
540 | (3) |
|
14.5 The Finite-Lattice Method |
|
|
543 | (12) |
|
14.5.1 Block-Formation and Accuracy |
|
|
544 | (4) |
|
14.5.2 Constructing Block Partition Functions |
|
|
548 | (3) |
|
14.5.3 Calculating the Series |
|
|
551 | (4) |
|
14.6 The Analysis of Series: Second-Order Transitions |
|
|
555 | (10) |
|
14.6.1 Late-Term Analysis |
|
|
556 | (1) |
|
|
557 | (2) |
|
|
559 | (3) |
|
14.6.4 Differential and Algebraic Approximants |
|
|
562 | (3) |
|
14.7 The Analysis of Series: First-Order Transitions |
|
|
565 | (2) |
|
15 Real-Space Renormalization Group Theory |
|
|
567 | (52) |
|
15.1 The Basic Elements of the Renormalization Group |
|
|
567 | (3) |
|
15.2 RG Transformations and Weight Functions |
|
|
570 | (4) |
|
15.3 Fixed Points and the Linear Renormalization Group |
|
|
574 | (3) |
|
15.4 Free Energy and Densities |
|
|
577 | (2) |
|
15.5 Decimation for the Ising Model |
|
|
579 | (9) |
|
|
579 | (6) |
|
|
585 | (3) |
|
15.6 The Kosterlitz-Thouless Transition |
|
|
588 | (6) |
|
15.7 Upper-Bound and Lower-Bound Approximations |
|
|
594 | (9) |
|
15.7.1 An Upper-Bound Method |
|
|
595 | (4) |
|
15.7.2 A Lower-Bound Method |
|
|
599 | (4) |
|
15.8 Finite-Lattice Approximations |
|
|
603 | (4) |
|
15.9 Variational Approximations |
|
|
607 | (2) |
|
15.10 Phenomenological Renormalization |
|
|
609 | (6) |
|
15.10.1 The Square-Lattice Ising Model |
|
|
611 | (2) |
|
|
613 | (1) |
|
15.10.3 More Than One Coupling |
|
|
614 | (1) |
|
15.11 Other Renormalization Group Methods |
|
|
615 | (4) |
|
Part V Mathematical Appendices |
|
|
|
|
619 | (40) |
|
|
619 | (5) |
|
|
619 | (2) |
|
16.1.2 The Cyclomatic Number |
|
|
621 | (1) |
|
16.1.3 Triangulation of Graphs |
|
|
622 | (1) |
|
|
622 | (1) |
|
|
623 | (1) |
|
|
624 | (9) |
|
16.2.1 Types of Regular Lattices |
|
|
624 | (4) |
|
16.2.2 Lattice Transformations |
|
|
628 | (5) |
|
16.3 Rapidity Graphs and Lattices |
|
|
633 | (4) |
|
|
637 | (22) |
|
16.4.1 Augmented Graphs and the Whitney Polynomial |
|
|
638 | (1) |
|
16.4.2 Hopping Matrices and the Canonical Flux Distribution |
|
|
638 | (1) |
|
16.4.3 Embeddings and Topologies |
|
|
639 | (1) |
|
|
640 | (4) |
|
16.4.5 Partially-Ordered Sequences of Graphs and the T Matrix |
|
|
644 | (3) |
|
16.4.6 Generating the Partially-Ordered Sequence |
|
|
647 | (4) |
|
16.4.7 Incorporating Sublattices |
|
|
651 | (3) |
|
16.4.8 The Guggenheim--McGlashan Approach |
|
|
654 | (2) |
|
|
656 | (3) |
|
|
659 | (44) |
|
|
659 | (11) |
|
17.1.1 Equivalence and Determinancy |
|
|
659 | (3) |
|
17.1.2 Critical Points, Codimension and Unfoldings |
|
|
662 | (6) |
|
17.1.3 Symmetry Considerations |
|
|
668 | (2) |
|
|
670 | (6) |
|
|
671 | (1) |
|
|
672 | (1) |
|
|
673 | (1) |
|
17.2.4 Theorems of Perron and Frobenius |
|
|
673 | (2) |
|
17.2.5 Direct Products and Traces |
|
|
675 | (1) |
|
17.2.6 Defective Matrices |
|
|
675 | (1) |
|
17.2.7 Groups of Matrices |
|
|
676 | (1) |
|
17.3 Groups and Representations |
|
|
676 | (15) |
|
|
678 | (4) |
|
17.3.2 Permutation Representations and Equivalence Classes |
|
|
682 | (2) |
|
17.3.3 Block Diagonalization Within an Equivalence Class... |
|
|
684 | (3) |
|
|
687 | (4) |
|
|
691 | (2) |
|
17.5 Some Transformations in the Complex Plane |
|
|
693 | (2) |
|
|
695 | (5) |
|
17.7 Determinants of Cyclic Matrices |
|
|
700 | (3) |
|
|
703 | (54) |
|
18.1 Fourier Transforms in d Dimensions |
|
|
703 | (8) |
|
18.1.1 Discrete Finite Lattices |
|
|
703 | (2) |
|
18.1.2 A Continuous Finite Volume |
|
|
705 | (2) |
|
18.1.3 A Continuous Infinite Volume |
|
|
707 | (1) |
|
18.1.4 Integrals Involving Bessel Functions |
|
|
708 | (2) |
|
18.1.5 Lattice Green's Functions |
|
|
710 | (1) |
|
18.2 Doubly-Periodic and Quasi-Periodic Functions |
|
|
711 | (3) |
|
18.3 Elliptic Integrals and Functions |
|
|
714 | (23) |
|
18.3.1 Elliptic Integrals |
|
|
714 | (3) |
|
18.3.2 Jacobi Theta Functions |
|
|
717 | (3) |
|
18.3.3 Jacobi Elliptic Functions |
|
|
720 | (4) |
|
18.3.4 Transformations in the Elliptic Modulus |
|
|
724 | (2) |
|
18.3.5 The Modified Amplitude Function |
|
|
726 | (1) |
|
|
727 | (1) |
|
18.3.7 Special Results and Functions for Chap. 12 |
|
|
728 | (3) |
|
18.3.8 Baxter's Modified Theta Functions |
|
|
731 | (6) |
|
18.4 The Potts Delta Function |
|
|
737 | (6) |
|
|
740 | (2) |
|
|
742 | (1) |
|
18.5 Pade, Differential and Algebraic Approximants |
|
|
743 | (14) |
|
|
743 | (5) |
|
18.5.2 Dlog Pade Approximants |
|
|
748 | (2) |
|
18.5.3 Differential Approximants |
|
|
750 | (4) |
|
18.5.4 Algebraic Approximants |
|
|
754 | (3) |
References and Author Index |
|
757 | (26) |
Index |
|
783 | |