Atjaunināt sīkdatņu piekrišanu

E-grāmata: Equivariant Cohomology of Configuration Spaces Mod 2: The State of the Art

  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Mathematics 2282
  • Izdošanas datums: 01-Jan-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030841386
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 59,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Mathematics 2282
  • Izdošanas datums: 01-Jan-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030841386
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book gives a brief treatment of the equivariant cohomology of the classical configuration space F(^d,n) from its beginnings to recent developments. This subject has been studied intensively, starting with the classical papers of Artin (1925/1947) on the theory of braids, and progressing through the work of Fox and Neuwirth (1962), Fadell and Neuwirth (1962), and Arnol'd (1969). The focus of this book is on the mod 2 equivariant cohomology algebras of F(^d,n), whose additive structure was described by Cohen (1976) and whose algebra structure was studied in an influential paper by Hung (1990). A detailed new proof of Hung's main theorem is given, however it is shown that some of the arguments given by him on the way to his result are incorrect, as are some of the intermediate results in his paper.This invalidates a paper by three of the authors, Blagojevi, Lück and Ziegler (2016), who used a claimed intermediate result in order to derive lower bounds for the existence of k-regular and -skew embeddings. Using the new proof of Hung's main theorem, new lower bounds for the existence of highly regular embeddings are obtained: Some of them agree with the previously claimed bounds, some are weaker.

Assuming only a standard graduate background in algebraic topology, this book carefully guides the reader on the way into the subject. It is aimed at graduate students and researchers interested in the development of algebraic topology in its applications in geometry.

Recenzijas

The book is well written. The book will be important for those who study the cohomology rings of configuration spaces. (Shintarō Kuroki, Mathematical Reviews, November, 2022)

1 Snapshots from the History
1(22)
1.1 The Braid Group
2(1)
1.2 The Fundamental Sequence of Fibrations
3(2)
1.3 Artin's Presentation of Bn and π1(F(R2, n))
5(2)
1.4 The Cohomology Ring H*(F(R2, n); Z)
7(2)
1.5 The Cohomology of the Braid Group Bn
9(1)
1.6 The Cohomology Ring H*(Bn; F2)
10(2)
1.7 Cohomology of Braid Spaces
12(4)
1.8 Homology of Unordered Configuration Spaces
16(7)
Part I Mod 2 Cohomology of Configuration Spaces
2 The Ptolemaic Epicycles Embedding
23(10)
3 The Equivariant Cohomology of Pe(Rd, 2m)
33(30)
3.1 Small Values of m
33(1)
3.2 The Case m = 2
34(5)
3.3 Cohomology of (X × X) ×z2 Sd-1 and (X × X) × Z2 EZ2
39(10)
3.4 The Induction Step
49(3)
3.5 The Restriction Homomorphisms -- Three Aspects
52(11)
3.5.1 A Restriction Homomorphism and the Mui Invariants
52(2)
3.5.2 A Restriction Homomorphism and the Dickson Invariants
54(4)
3.5.3 Two Lemmas
58(5)
4 Hu'ng's Injectivily Theorem
63(32)
4.1 Critical Points in Hu'ng's Proof of His Injectivity Theorem
64(11)
4.2 Proof of the Injectivily Theorem
75(12)
4.2.1 Prerequisites
77(7)
4.2.2 Proof of the Dual Epimorphism Theorem
84(3)
4.3 An Unexpected Corollary
87(8)
4.3.1 Motivation
87(2)
4.3.2 Corollary
89(6)
Part II Applications to the (Non-)Existence of Regular and Skew Embeddings
5 On Highly Regular Embeddings: Revised
95(42)
5.1 κ-Regular Embeddings
96(17)
5.2 L-Skew Embeddings
113(15)
5.3 κ-Regular-L-Skew Embeddings
128(4)
5.4 Complex Highly Regular Embeddings
132(5)
6 More Bounds for Highly Regular Embeddings
137(26)
6.1 Examples of S2m-Representations and Associated Vector Bundles
137(3)
6.1.1 Examples of S2m-Representations
138(1)
6.1.2 Associated Vector Bundles
138(2)
6.2 The Key Lemma and its Consequences
140(8)
6.3 Additional Bounds for the Existence of Highly Regular Embeddings
148(9)
6.4 Additional Bounds for the Existence of Complex Highly Regular Embeddings
157(6)
Part III Technical Tools
7 Operads
163(10)
7.1 Definition and Basic Example
163(3)
7.2 O-Space
166(1)
7.3 Little Cubes Operad
167(2)
7.4 Cd-Spaces, An Example
169(1)
7.5 Cd-Spaces, a Free Cd-Space Over X
170(1)
7.6 Araki--Kudo--Dyer--Lashof Homology Operations
171(2)
8 The Dickson Algebra
173(6)
8.1 Rings of Invariants
173(3)
8.2 The Dickson Invariants as Characteristic Classes
176(3)
9 The Stiefel--Whitney Classes of the Wreath Square of a Vector Bundle
179(8)
9.1 The Wreath Square and the (d -- 1)-Partial Wreath Square of a Vector Bundle
179(2)
9.2 Cohomology of B(S2ξ) = S2B(ξ)
181(2)
9.3 The Total Stiefel--Whitney Class of the Wreath Square of a Vector Bundle
183(4)
10 Miscellaneous Calculations
187(14)
10.1 Detecting Group Cohomology
187(1)
10.2 The Image of a Restriction Homomorphism
188(4)
10.3 Weyl Groups of an Elementary Abelian Group
192(2)
10.4 Cohomology of the Real Projective Space with Local Coefficients
194(3)
10.5 Homology of the Real Projective Space with Local Coefficients
197(4)
References 201(6)
Index 207