Atjaunināt sīkdatņu piekrišanu

Equivariant Infinite Loop Space Theory: The Space Level Story [Mīkstie vāki]

  • Formāts: Paperback / softback, 136 pages, height x width: 254x178 mm
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 31-May-2025
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470472481
  • ISBN-13: 9781470472481
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 136 pages, height x width: 254x178 mm
  • Sērija : Memoirs of the American Mathematical Society
  • Izdošanas datums: 31-May-2025
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470472481
  • ISBN-13: 9781470472481
Citas grāmatas par šo tēmu:
"We rework and generalize equivariant infinite loop space theory, which shows how to construct G-spectra from G-spaces with suitable structure. There is a classical version which gives classical -G-spectra for any topological group G, but our focus is onthe construction of genuine -G-spectra when G is finite. We also show what is and is not true when G is a compact Lie group. We give new information about the Segal and operadic equivariant infinite loop space machines, supplying many details that are missing from the literature, and we prove by direct comparison that the two machines give equivalent output when fed equivalent input. The proof of the corresponding nonequivariant uniqueness theorem, due to May and Thomason, works for classical G-spectra for general G but fails for genuine G-spectra. Even in the nonequivariant case, our comparison theorem is considerably more precise, giving an illuminating direct point-set level comparison. We have taken the opportunity to update this general area, equivariant and nonequivariant, giving many new proofs, filling in some gaps, and giving a number of corrections to results and proofs in the literature"-- Provided by publisher.
Introduction
1. Preliminaries
2. The simplicial and conceptual versions of the Segal machine
3. The homotopical version of the Segal machine
4. The generalized Segal machine
5. The generalized operadic machine
6. The equivalence between the Segal and operadic machines
7. Proofs of technical results about the operadic machine
8. Proofs of technical results about the Segal machine
9. General topological groups and compact Lie groups
10. Epilogue: Model categorical interpretations
A. Bearding functors $\mathscr {D}\longrightarrow G\mathscr {U}_*$
B. Realization of levelwise $G$-cofibrations and $G$-equivalences
J. Peter May, The University of Chicago, Illinois

Mona Merling, University of Pennsylvania, Philadelphia, Pennsylvania

Angelica M. Osorno, Reed College, Portland, Oregon.