Preface |
|
xv | |
Acknowledgements |
|
xxi | |
Chapter 1 RF DESIGN and ESD |
|
1 | (60) |
|
1.1 Fundamental Concepts of ESD Design |
|
|
1 | (3) |
|
1.2 Fundamental Concepts of RF ESD Design |
|
|
4 | (6) |
|
1.3 Key RF ESD Contributions |
|
|
10 | (3) |
|
|
13 | (1) |
|
1.5 ESD Failure Mechanisms |
|
|
13 | (4) |
|
1.5.1 RF CMOS ESD Failure Mechanisms |
|
|
14 | (1) |
|
1.5.2 Silicon Germanium ESD Failure Mechanisms |
|
|
15 | (1) |
|
1.5.3 Silicon Germanium Carbon ESD Failure Mechanisms in Silicon Germanium Carbon Devices |
|
|
15 | (1) |
|
1.5.4 Gallium Arsenide Technology ESD Failure Mechanisms |
|
|
16 | (1) |
|
1.5.5 Indium Gallium Arsenide ESD Failure Mechanisms |
|
|
16 | (1) |
|
1.5.6 RF Bipolar Circuits ESD Failure Mechanisms |
|
|
17 | (1) |
|
|
17 | (4) |
|
1.7 Two-Port Network Parameters |
|
|
21 | (3) |
|
|
21 | (1) |
|
|
22 | (1) |
|
|
22 | (1) |
|
|
23 | (1) |
|
1.8 Stability: RF Design Stability and ESD |
|
|
24 | (2) |
|
1.9 Device Degradation and ESD Failure |
|
|
26 | (3) |
|
1.9.1 ESD-Induced D.C. Parameter Shift and Failure Criteria |
|
|
26 | (2) |
|
1.9.2 RF Parameters, ESD Degradation, and Failure Criteria |
|
|
28 | (1) |
|
|
29 | (10) |
|
1.10.1 ESD Testing Models |
|
|
29 | (4) |
|
1.10.2 RF Maximum Power-to-Failure and ESD Pulse Testing Methodology |
|
|
33 | (4) |
|
1.10.3 ESD-Induced RF Degradation and S-Parameter Evaluation Test Methodology |
|
|
37 | (2) |
|
1.11 Time Domain Reflectometry (TDR) and Impedance Methodology for ESD Testing |
|
|
39 | (7) |
|
1.11.1 Time Domain Reflectometry (TDR) ESD Test System Evaluation |
|
|
40 | (4) |
|
1.11.2 ESD Degradation System Level Method Eye Tests |
|
|
44 | (2) |
|
1.12 Product Level ESD Test and RF Functional Parameter Failure |
|
|
46 | (2) |
|
1.13 Combined RF and ESD TLP Test Systems |
|
|
48 | (3) |
|
1.14 Closing Comments and Summary |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
53 | (8) |
Chapter 2 RF ESD Design |
|
61 | (50) |
|
2.1 ESD Design Methods: Ideal ESD Networks and RF ESD Design Windows |
|
|
61 | (3) |
|
2.1.1 Ideal ESD Networks and the CurrentVoltage d.c. Design Window |
|
|
61 | (2) |
|
2.1.2 Ideal ESD Networks in the Frequency Domain Design Window |
|
|
63 | (1) |
|
2.2 RF ESD Design Methods: Linearity |
|
|
64 | (4) |
|
2.3 RF ESD Design: Passive Element Quality Factors and Figures of Merit |
|
|
68 | (2) |
|
2.4 RF ESD Design Methods: Method of Substitution |
|
|
70 | (3) |
|
2.4.1 Method of Substitution of Passive Element to ESD Network Element |
|
|
71 | (1) |
|
2.4.2 Substitution of ESD Network Element to Passive Element |
|
|
72 | (1) |
|
2.5 RF ESD Design Methods: Matching Networks and RF ESD Networks |
|
|
73 | (6) |
|
2.5.1 RF ESD Method Conversion of Matching Networks to ESD Networks |
|
|
74 | (2) |
|
2.5.2 RF ESD Method: Conversion of ESD Networks into Matching Networks |
|
|
76 | (1) |
|
2.5.2.1 Conversion of ESD Networks into L-Match Networks |
|
|
76 | (1) |
|
2.5.2.2 Conversion of ESD Networks into H-Match Networks |
|
|
77 | (1) |
|
2.5.2.3 Conversion of ESD Networks into T-Match Networks |
|
|
78 | (1) |
|
2.6 RF ESD Design Methods: Inductive Shunt |
|
|
79 | (3) |
|
2.7 RF ESD Design Methods: Cancellation Method |
|
|
82 | (7) |
|
2.7.1 Quality Factors and the Cancellation Method |
|
|
82 | (1) |
|
2.7.2 Inductive Cancellation of Capacitance Load and Figures of Merit |
|
|
83 | (2) |
|
2.7.3 Cancellation Method and ESD Circuitry |
|
|
85 | (4) |
|
2.8 RF ESD Design Methods: Impedance Isolation Technique Using LC Resonator |
|
|
89 | (2) |
|
2.9 RF ESD Design Methods: Lumped versus Distributed Loads |
|
|
91 | (4) |
|
2.9.1 RF ESD Distributed Load with Coplanar Wave Guides |
|
|
92 | (1) |
|
2.9.2 RF ESD Distribution Coplanar Waveguides Analysis Using ABCD Matrices |
|
|
93 | (2) |
|
2.10 ESD RF Design Synthesis and Floor Planning: RF, Analog, and Digital Integration |
|
|
95 | (6) |
|
2.10.1 ESD Power Clamp Placement Within a Domain |
|
|
96 | (1) |
|
2.10.2 Power Bus Architecture and ESD Design Synthesis |
|
|
97 | (1) |
|
2.10.3 VDT-to-Vss Power Rail Protection |
|
|
98 | (1) |
|
2.10.4 VDD-to-Analog VDD and VDD-to-RF Vic Power Rail Protection |
|
|
99 | (1) |
|
2.10.5 Interdomain ESD Protection Networks |
|
|
100 | (1) |
|
2.11 ESD Circuits and RF Bond Pad Integration |
|
|
101 | (2) |
|
2.12 ESD Structures Under Wire Bond Pads |
|
|
103 | (3) |
|
2.13 Summary and Closing Comments |
|
|
106 | (1) |
|
|
106 | (2) |
|
|
108 | (3) |
Chapter 3 RF CMOS and ESD |
|
111 | (28) |
|
3.1 RF CMOS: ESD Device Comparisons |
|
|
111 | (5) |
|
3.2 Circular RF ESD Devices |
|
|
116 | (2) |
|
3.3 RF ESD DesignESD Wiring Design |
|
|
118 | (2) |
|
3.4 RF Passives: ESD and Schottky Barrier Diodes |
|
|
120 | (2) |
|
3.5 RF Passives: ESD and Inductors |
|
|
122 | (5) |
|
3.6 RF Passives: ESD and Capacitors |
|
|
127 | (4) |
|
3.6.1 Metal-oxide-Semiconductor and MetalInsulatorMetal Capacitors |
|
|
128 | (1) |
|
3.6.2 Varactors and Hyper-Abrupt Junction Varactor Capacitors |
|
|
128 | (1) |
|
3.6.3 Metal-ILD-Metal Capacitors |
|
|
129 | (1) |
|
3.6.4 Vertical Parallel Plate (VPP) Capacitors |
|
|
130 | (1) |
|
3.7 Summary and Closing Comments |
|
|
131 | (1) |
|
|
132 | (1) |
|
|
133 | (6) |
Chapter 4 RF CMOS ESD Networks |
|
139 | (44) |
|
4.1 RF CMOS Input Circuits |
|
|
139 | (6) |
|
4.1.1 RF CMOS ESD Diode Networks |
|
|
139 | (4) |
|
4.1.2 RF CMOS Diode String ESD Network |
|
|
143 | (2) |
|
4.2 RF CMOS: DiodeInductor ESD Networks |
|
|
145 | (4) |
|
4.2.1 RF InductorDiode ESD Networks |
|
|
147 | (1) |
|
4.2.2 RF DiodeInductor ESD Networks |
|
|
148 | (1) |
|
4.3 RF CMOS Impedance Isolation LC Resonator ESD Networks |
|
|
149 | (3) |
|
4.3.1 RF CMOS LCDiode ESD Networks |
|
|
150 | (1) |
|
4.3.2 RF CMOS DiodeLC ESD Networks |
|
|
150 | (1) |
|
4.3.3 Experimental Results of the RF CMOS LCDiode Networks |
|
|
151 | (1) |
|
4.4 RF CMOS LNA ESD Design |
|
|
152 | (5) |
|
4.4.1 RF LNA ESD Design: Low Resistance ESD Inductor and ESD Diode Clamping Elements in H-Configuration |
|
|
153 | (4) |
|
4.5 RF CMOS T-Coil Inductor ESD Input Network |
|
|
157 | (2) |
|
4.6 RF CMOS Distributed ESD Networks |
|
|
159 | (6) |
|
4.6.1 RF CMOS Distributed RF ESD Networks |
|
|
159 | (1) |
|
4.6.2 RF CMOS Distributed RF ESD Networks using Series Inductor and Dual-Diode Shunt |
|
|
160 | (3) |
|
4.6.3 RF CMOS Distributed RF ESD Networks using Series Inductor and MOSFET Parallel Shunt |
|
|
163 | (2) |
|
4.7 RF CMOS Distributed ESD Networks: Transmission Lines and Coplanar Waveguides |
|
|
165 | (2) |
|
4.8 RF CMOS: ESD and RF LDMOS Power Technology |
|
|
167 | (3) |
|
4.9 RF CMOS ESD Power Clamps |
|
|
170 | (6) |
|
4.9.1 RC-Triggered MOSFET ESD Power Clamp |
|
|
172 | (2) |
|
4.9.2 High Voltage RC-Triggered MOSFET ESD Power Clamp |
|
|
174 | (1) |
|
4.9.3 Voltage-Triggered MOSFET ESD Power Clamps |
|
|
175 | (1) |
|
4.10 Summary and Closing Comments |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (5) |
Chapter 5 Bipolar Physics |
|
183 | (34) |
|
5.1 Bipolar Device Physics |
|
|
183 | (3) |
|
5.1.1 Bipolar Transistor Current Equations |
|
|
183 | (1) |
|
5.1.2 Bipolar Current Gain and Collector-to-Emitter Transport |
|
|
184 | (1) |
|
5.1.3 Unity Current Gain Cutoff Frequency |
|
|
185 | (1) |
|
5.1.4 Unity Power Gain Cutoff Frequency |
|
|
186 | (1) |
|
|
186 | (4) |
|
5.2.1 Avalanche Multiplication and Breakdown |
|
|
186 | (2) |
|
5.2.2 Bipolar Transistor Breakdown |
|
|
188 | (2) |
|
|
190 | (1) |
|
5.4 Johnson Limit: Physical Limitations of the Transistor |
|
|
191 | (4) |
|
5.4.1 VoltageFrequency Relationship |
|
|
191 | (2) |
|
5.4.2 Johnson Limit CurrentFrequency Formulation |
|
|
193 | (1) |
|
5.4.3 Johnson Limit Power Formulation |
|
|
194 | (1) |
|
5.5 RF Instability: Emitter Collapse |
|
|
195 | (6) |
|
5.6 ESD RF Design Layout: Emitter, Base, and Collector Configurations |
|
|
201 | (3) |
|
5.7 ESD RF Design Layout: Utilization of a Second Emitter (Phantom Emitter) |
|
|
204 | (4) |
|
5.8 ESD RF Design Layout: Emitter Ballasting |
|
|
208 | (2) |
|
5.9 ESD RF Design Layout: Thermal Shunts and Thermal Lenses |
|
|
210 | (1) |
|
5.10 Base-Ballasting and RF Stability |
|
|
211 | (2) |
|
5.11 Summary and Closing Comments |
|
|
213 | (1) |
|
|
213 | (1) |
|
|
214 | (3) |
Chapter 6 Silicon Germanium and ESD |
|
217 | (52) |
|
6.1 Heterojunctions and Silicon Germanium Technology |
|
|
217 | (4) |
|
6.1.1 Silicon Germanium HBT Devices |
|
|
218 | (1) |
|
6.1.2 Silicon Germanium Device Structure |
|
|
219 | (2) |
|
6.2 Silicon Germanium Physics |
|
|
221 | (3) |
|
6.3 Silicon Germanium Carbon |
|
|
224 | (2) |
|
6.4 Silicon Germanium ESD Measurements |
|
|
226 | (7) |
|
6.4.1 Silicon Germanium Collector-to-Emitter ESD Stress |
|
|
227 | (2) |
|
6.4.2 ESD Comparison of Silicon Germanium HBT and Silicon BJT |
|
|
229 | (3) |
|
6.4.3 SiGe HBT Electrothermal Human Body Model (HBM) Simulation of CollectorEmitter Stress |
|
|
232 | (1) |
|
6.5 Silicon Germanium Carbon CollectorEmitter ESD Measurements |
|
|
233 | (4) |
|
6.6 Silicon Germanium Transistor EmitterBase Design |
|
|
237 | (22) |
|
6.6.1 Epitaxial-Base Heterojunction Bipolar Transistor (HBT) EmitterBase Design |
|
|
238 | (2) |
|
6.6.2 EmitterBase Design RF Frequency Performance Metrics |
|
|
240 | (1) |
|
6.6.3 SiGe HBT EmitterBase Resistance Model |
|
|
240 | (1) |
|
6.6.4 SiGe HBT EmitterBase Design and Silicide Placement |
|
|
241 | (4) |
|
6.6.5 Self-Aligned (SA) EmitterBase Design |
|
|
245 | (3) |
|
6.6.6 Non-self aligned (NSA) EmitterBase Design |
|
|
248 | (8) |
|
6.6.6.1 NSA Human Body Model (HBM) Step Stress |
|
|
249 | (1) |
|
6.6.6.2 Transmission Line Pulse (TLP) Step Stress |
|
|
250 | (1) |
|
6.6.6.3 RF Testing of SiGe HBT EmitterBase Configuration |
|
|
251 | (3) |
|
6.6.6.4 Unity Current Gain Cutoff FrequencyCollector Current Plots |
|
|
254 | (2) |
|
6.6.7 Silicon Germanium Carbon ESD-Induced S-Parameter Degradation |
|
|
256 | (2) |
|
6.6.8 Electrothermal Simulation of EmitterBase Stress |
|
|
258 | (1) |
|
6.7 Field-Oxide (FOX) Isolation Defined Silicon Germanium Heterojunction Bipolar Transistor HBM Data |
|
|
259 | (1) |
|
6.8 Silicon Germanium HBT Multiple-Emitter Study |
|
|
260 | (2) |
|
6.9 Summary and Closing Comments |
|
|
262 | (1) |
|
|
262 | (1) |
|
|
263 | (6) |
Chapter 7 Gallium Arsenide and ESD |
|
269 | (18) |
|
7.1 Gallium Arsenide Technology and ESD |
|
|
269 | (1) |
|
7.2 Gallium Arsenide Energy-to-Failure and Power-to-Failure |
|
|
269 | (3) |
|
7.3 Gallium Arsenide ESD Failures in Active and Passive Elements |
|
|
272 | (1) |
|
7.4 Gallium Arsenide HBT Devices and ESD |
|
|
273 | (4) |
|
7.4.1 Gallium Arsenide HBT Device ESD Results |
|
|
274 | (1) |
|
7.4.2 Gallium Arsenide HBT Diode Strings |
|
|
275 | (2) |
|
7.5 Gallium Arsenide HBT-Based Passive Elements |
|
|
277 | (2) |
|
7.5.1 GaAs HBT BaseCollector Varactor |
|
|
277 | (2) |
|
7.6 Gallium Arsenide Technology Table of Failure Mechanisms |
|
|
279 | (1) |
|
7.7 Indium Gallium Arsenide and ESD |
|
|
279 | (2) |
|
7.8 Indium Phosphide (InP) and ESD |
|
|
281 | (1) |
|
7.9 Summary and Closing Comments |
|
|
281 | (1) |
|
|
281 | (1) |
|
|
282 | (5) |
Chapter 8 Bipolar Receiver Circuits and Bipolar ESD Networks |
|
287 | (52) |
|
8.1 Bipolar Receivers and ESD |
|
|
287 | (1) |
|
8.2 Single Ended Common-Emitter Receiver Circuits |
|
|
288 | (12) |
|
8.2.1 Single-Ended Bipolar Receiver with D.C. Blocking Capacitors |
|
|
289 | (1) |
|
8.2.2 Single-Ended Bipolar Receiver with D.C. Blocking Capacitors and ESD Protection |
|
|
290 | (1) |
|
8.2.3 Bipolar Single-Ended Common-Emitter Receiver Circuit with Feedback Circuit |
|
|
291 | (2) |
|
8.2.3.1 Bipolar Single-Ended Common-Emitter Circuit with Resistor Feedback Element |
|
|
291 | (1) |
|
8.2.3.2 Bipolar Single-Ended Common-Emitter Receiver Circuit with ResistorCapacitor Feedback Element |
|
|
292 | (1) |
|
8.2.4 Bipolar Single-Ended Common-Emitter Receiver Circuit with Emitter Degeneration |
|
|
293 | (4) |
|
8.2.5 Bipolar Single-Ended Common Emitter Circuit with Balun Output |
|
|
297 | (1) |
|
8.2.6 Bipolar Single-Ended Series Cascode Receiver Circuits |
|
|
298 | (2) |
|
8.3 Bipolar Differential Receiver Circuits |
|
|
300 | (3) |
|
8.3.1 Bipolar Differential Cascode Common-Emitter Receiver Circuits |
|
|
302 | (1) |
|
8.4 Bipolar ESD Input Circuits |
|
|
303 | (9) |
|
8.4.1 Diode-Configured Bipolar ESD Input Circuits |
|
|
307 | (1) |
|
8.4.2 Bipolar ESD Input: Resistor Grounded Base Bipolar ESD Input |
|
|
308 | (4) |
|
8.5 Bipolar-Based ESD Power Clamps |
|
|
312 | (22) |
|
8.5.1 Bipolar Voltage-Triggered ESD Power Clamps |
|
|
312 | (1) |
|
8.5.2 Zener Breakdown Voltage-Triggered ESD Power Clamps |
|
|
312 | (6) |
|
8.5.3 BVcEo Voltage-Triggered ESD Power Clamps |
|
|
318 | (5) |
|
8.5.4 Mixed Voltage Interface Forward-Bias Voltage and BVCEO Breakdown Synthesized Bipolar ESD Power Clamps |
|
|
323 | (5) |
|
8.5.5 Ultra-Low Voltage Forward-Biased Voltage-Trigger BiCMOS ESD Power Clamps |
|
|
328 | (4) |
|
8.5.6 Capacitively-Triggered BiCMOS ESD Power Clamps |
|
|
332 | (2) |
|
8.6 Bipolar ESD Diode String and Triple-Well Power Clamps |
|
|
334 | (1) |
|
8.7 Summary and Closing Comments |
|
|
335 | (1) |
|
|
335 | (2) |
|
|
337 | (2) |
Chapter 9 RF and ESD Computer-Aided Design (CAD) |
|
339 | (36) |
|
9.1 RF ESD Design Environment |
|
|
339 | (2) |
|
9.1.1 Electrostatic Discharge and Radio Frequency (RF) Cosynthesis Design Methods |
|
|
339 | (1) |
|
9.1.2 ESD Hierarchical Pcell Physical Layout Generation |
|
|
340 | (1) |
|
9.1.3 ESD Hierarchical Pcell Schematic Generation |
|
|
341 | (1) |
|
9.2 ESD Design with Hierarchical Parameterized Cells |
|
|
341 | (6) |
|
9.2.1 Hierarchical Pcell Graphical Method |
|
|
342 | (2) |
|
9.2.2 Hierarchical Pcell Schematic Method |
|
|
344 | (3) |
|
9.3 ESD Design of RF CMOS-Based Hierarchical Parameterized Cells |
|
|
347 | (2) |
|
9.4 RF BiCMOS ESD Hierarchical Parameterized Cell |
|
|
349 | (10) |
|
9.4.1 BiCMOS ESD Input Networks |
|
|
350 | (3) |
|
9.4.2 BiCMOS ESD Rail-to-Rail |
|
|
353 | (1) |
|
9.4.3 BiCMOS ESD Power Clamps |
|
|
354 | (5) |
|
9.5 Advantages and Limitations of the RF ESD Design System |
|
|
359 | (3) |
|
9.6 Guard Ring P-Cell Methodology |
|
|
362 | (8) |
|
9.6.1 Guard Rings for Internal and External Latchup Phenomena |
|
|
362 | (1) |
|
|
363 | (2) |
|
|
365 | (2) |
|
9.6.4 Guard Ring Characterization |
|
|
367 | (3) |
|
9.7 Summary and Closing Comments |
|
|
370 | (1) |
|
|
370 | (1) |
|
|
371 | (4) |
Chapter 10 Alternative ESD Concepts: On-Chip and Off-Chip ESD Protection Solutions |
|
375 | (16) |
|
|
375 | (3) |
|
10.2 Field Emission Devices |
|
|
378 | (4) |
|
10.2.1 Field Emission Device (FED) as ESD Protection |
|
|
378 | (1) |
|
10.2.2 Field Emission Device in Gallium Arsenide Technology |
|
|
379 | (1) |
|
10.2.3 Field Emission Device Electronic Blunting Effect |
|
|
380 | (1) |
|
10.2.4 Field Emission Device Multiemitter ESD Design |
|
|
380 | (2) |
|
10.2.5 Field Emission Device (FED) ESD Design Practices |
|
|
382 | (1) |
|
10.3 Off-Chip Protection and Off-Chip Transient Suppression Devices |
|
|
382 | (4) |
|
10.3.1 Off-Chip Transient Voltage Suppression (TVS) Devices |
|
|
383 | (1) |
|
10.3.2 Off-Chip Polymer Voltage Suppression (PVS) Devices |
|
|
384 | (2) |
|
10.4 Package-Level Mechanical ESD Solutions |
|
|
386 | (1) |
|
10.5 RF Proximity Communications Chip-to-Chip ESD Design Practices |
|
|
387 | (1) |
|
10.6 Summary and Closing Comments |
|
|
388 | (1) |
|
|
389 | (1) |
|
|
389 | (2) |
Index |
|
391 | |