Atjaunināt sīkdatņu piekrišanu

E-grāmata: Essential Mathematics for Undergraduates: A Guided Approach to Algebra, Geometry, Topology and Analysis

  • Formāts: PDF+DRM
  • Izdošanas datums: 16-Feb-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030871741
  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 16-Feb-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030871741

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook covers topics of undergraduate mathematics in abstract algebra, geometry, topology and analysis with the purpose of connecting the underpinning key ideas. It guides STEM students towards developing knowledge and skills to enrich their scientific education. In doing so it avoids the common mechanical approach to problem-solving based on the repetitive application of dry formulas. The presentation preserves the mathematical rigour throughout and still stays accessible to undergraduates. The didactical focus is threaded through the assortment of subjects and reflects in the book’s structure.

Part 1 introduces the mathematical language and its rules together with the basic building blocks. Part 2 discusses the number systems of common practice, while the backgrounds needed to solve equations and inequalities are developed in Part 3. Part 4 breaks down the traditional, outdated barriers between areas, exploring in particular the interplay between algebra and geometry. Two appendices form Part 5: the Greek etymology of frequent terms and a list of mathematicians mentioned in the book. Abundant examples and exercises are disseminated along the text to boost the learning process and allow for independent work.

Students will find invaluable material to shepherd them through the first years of an undergraduate course, or to complement previously learnt subject matters. Teachers may pick’n’mix the contents for planning lecture courses or supplementing their classes.

Recenzijas

The book being reviewed is a collection of what the author considers to be essential material for undergraduates . it has to be said that many students will find that there is plenty to learn from this well-written book, which would also be a useful reference text had there been a properly compiled index. (Peter Shiu, The Mathematical Gazette, Vol. 107 (570), November, 2023)

Part I Basic Objects and Formalisation
1 Round-Up of Elementary Logic
3(22)
1.1 First-Order Languages
3(3)
1.2 Propositional Calculus
6(5)
1.3 Predicative Calculus
11(4)
1.4 Deduction
15(4)
1.5 Soundness and Completeness
19(6)
2 Naive Set Theory
25(18)
2.1 The Algebra of Sets
26(3)
2.2 Binary Relations
29(14)
2.2.1 Equivalence Relations
32(4)
2.2.2 Order Relations
36(7)
3 Functions
43(32)
3.1 Lexicon
43(7)
3.2 Invertibility
50(9)
3.3 Operations
59(3)
3.4 Axiom of Choice
62(6)
3.5 Families of Sets
68(7)
4 More Set Theory and Logic
75(18)
4.1 Moore Operators
75(5)
4.2 Galois Connections
80(4)
4.3 Model Theory
84(4)
4.4 Foundations
88(5)
5 Boolean Algebras
93(20)
5.1 Basics
94(6)
5.2 Filters and Representations
100(6)
5.3 Boolean Logic
106(7)
Part II Numbers and Structures
6 Intuitive Arithmetics
113(40)
6.1 Natural Numbers
113(4)
6.2 Principle of Induction
117(4)
6.3 Recursion
121(5)
6.4 Integer Numbers
126(11)
6.4.1 Divisibility
128(9)
6.5 Rational Numbers
137(5)
6.5.1 Decimal Representation
140(2)
6.6 A Tasting of Cardinal Numbers
142(11)
7 Real Numbers
153(36)
7.1 Algebraic Properties and Ordering
156(5)
7.2 Absolute Value
161(4)
7.3 Completeness
165(3)
7.4 Roots
168(2)
7.5 Decimal Approximation
170(4)
7.6 Extending the Real Line
174(3)
7.7 Transfinite Arithmetics
177(12)
8 Totally Ordered Spaces
189(16)
8.1 Order Topology
190(6)
8.2 Well-Ordered Spaces
196(9)
Part III Elementary Real Functions
9 Real Polynomials
205(16)
9.1 The Algebra of Polynomials
205(7)
9.2 Real Roots
212(9)
10 Real Functions of One Real Variable
221(28)
10.1 The Algebra of Real Functions
225(2)
10.2 Graphs and Curves
227(7)
10.3 Additional Features
234(15)
10.3.1 Monotonicity Conditions
234(3)
10.3.2 Symmetry Conditions
237(5)
10.3.3 Boundedness Conditions
242(7)
11 Algebraic Functions
249(14)
11.1 Polynomial Functions
250(4)
11.2 Algebraic Equations and Inequalities
254(6)
11.3 Rational Functions
260(3)
12 Elementary Transcendental Functions
263(32)
12.1 Exponential Functions
264(5)
12.2 Logarithmic Functions
269(4)
12.3 Hyperbolic Functions
273(6)
12.4 Trigonometric Functions
279(16)
13 Complex Numbers
295(20)
13.1 Geometric Aspects
299(5)
13.2 Polynomial Factorisation
304(7)
13.3 Algebraic and Transcendental Numbers
311(4)
14 Enumerative Combinatorics
315(24)
14.1 Permutations
315(4)
14.2 The Twofold Way
319(4)
14.3 The Binomial Formula
323(6)
14.4 Generating Functions
329(10)
Part IV Geometry Through Algebra
15 Vector Spaces
339(34)
15.1 Lexicon and Basic Properties
339(7)
15.2 Linear Maps
346(6)
15.3 Complexification
352(3)
15.4 Bilinear and Quadratic Forms
355(4)
15.5 Euclidean Spaces
359(6)
15.6 Cross Product
365(3)
15.7 Detour into Physics
368(5)
16 Orthogonal Operators
373(12)
16.1 Orthogonal Groups
373(5)
16.2 The Spectral Theorem
378(7)
17 Actions and Representations
385(16)
17.1 Group Actions
385(7)
17.2 Representations
392(3)
17.3 The Erlangen Programme
395(6)
18 Elementary Plane Geometry
401(38)
18.1 The Euclidean Plane
402(14)
18.1.1 Parallelism
408(3)
18.1.2 Euclidean Isometries
411(5)
18.2 The Sphere
416(7)
18.2.1 Spherical Coordinates
416(4)
18.2.2 Geometry on the Sphere
420(3)
18.3 The Hyperbolic Plane
423(7)
18.4 Trichotomy
430(4)
18.5 The Euler Characteristic
434(5)
19 Metric Spaces
439(32)
19.1 Metric Topology
442(6)
19.2 Isometries
448(2)
19.3 Sequential Convergence
450(4)
19.4 Complete Metric Spaces
454(7)
19.5 Normed Vector Spaces
461(4)
19.6 Completions
465(6)
Appendices 471(4)
References 475(4)
Author Index 479(4)
Index 483
Simon G. Chiossi is a lecturer at Fluminense Federal University in Brazil. He was awarded a Ph.D. in mathematics from the University of Genoa in 2003. His research interests lie in complex differential geometry and Lie theory, with focus on special geometry in dimensions 4--8.