Preface |
|
xi | |
|
|
1 | (24) |
|
1.1 What is Statistical Mechanics? |
|
|
1 | (1) |
|
1.2 Probabilistic Behaviour |
|
|
2 | (14) |
|
1.2.1 Axioms of Probability |
|
|
3 | (1) |
|
1.2.2 Example: Coin Toss Experiment |
|
|
4 | (1) |
|
1.2.3 Probability Distributions |
|
|
5 | (2) |
|
1.2.4 Example: Random Walk |
|
|
7 | (4) |
|
1.2.5 Large-Af Limit of the Binomial Distribution |
|
|
11 | (4) |
|
1.2.6 Central Limit Theorem |
|
|
15 | (1) |
|
1.3 Microstates and Macrostates |
|
|
16 | (3) |
|
1.3.1 Example: Non-interacting Spins in a Solid |
|
|
17 | (2) |
|
1.4 Information, Ignorance and Entropy |
|
|
19 | (2) |
|
|
21 | (1) |
|
|
21 | (4) |
|
2 The Microcanonical Ensemble |
|
|
25 | (16) |
|
|
26 | (5) |
|
2.1.1 Heat Flow in the Approach to Equilibrium |
|
|
28 | (1) |
|
2.1.2 Principle of Maximum Entropy |
|
|
29 | (1) |
|
2.1.3 Energy Resolution and Entropy |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
32 | (2) |
|
2.4 Example: Non-interacting Spins in a Solid |
|
|
34 | (2) |
|
|
36 | (1) |
|
|
37 | (4) |
|
|
41 | (7) |
|
3.1 Phase Space and Hamiltonian Dynamics |
|
|
41 | (4) |
|
|
45 | (1) |
|
3.2.1 Non-ergodic Systems |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (2) |
|
|
48 | (38) |
|
|
48 | (2) |
|
4.2 Bridge Equation in the Canonical Ensemble |
|
|
50 | (5) |
|
4.2.1 Boltzmann Distribution |
|
|
52 | (1) |
|
4.2.2 Derivatives of the Partition Function |
|
|
52 | (2) |
|
4.2.3 Equivalence of the Canonical and Microcanonical Ensembles |
|
|
54 | (1) |
|
4.3 Connections to Thermodynamics |
|
|
55 | (1) |
|
|
56 | (9) |
|
|
56 | (3) |
|
4.4.2 Quantum Simple Harmonic Oscillator |
|
|
59 | (2) |
|
4.4.3 Classical Partition Function and Classical Harmonic Oscillator |
|
|
61 | (1) |
|
|
62 | (2) |
|
|
64 | (1) |
|
|
65 | (10) |
|
4.5.1 Uncoupled Subsystems |
|
|
65 | (2) |
|
4.5.2 Distinguishable and Indistinguishable Particles |
|
|
67 | (3) |
|
|
70 | (3) |
|
4.5.4 Example: Entropy of Mixing |
|
|
73 | (2) |
|
|
75 | (3) |
|
4.7 The Equipartition Theorem |
|
|
78 | (2) |
|
4.7.1 Example: The Ideal Gas |
|
|
79 | (1) |
|
4.7.2 Dulong and Petit Law |
|
|
79 | (1) |
|
|
80 | (1) |
|
|
81 | (5) |
|
|
86 | (21) |
|
5.1 Maxwell-Boltzmann Velocity Distribution |
|
|
86 | (3) |
|
|
87 | (1) |
|
5.1.2 Maxwell-Boltzmann Velocity Distribution |
|
|
87 | (2) |
|
5.2 Properties of the Maxwell-Boltzmann Velocity Distribution |
|
|
89 | (2) |
|
5.2.1 Distribution of Speeds |
|
|
90 | (1) |
|
5.3 Kinetic Theory for an Ideal Gas |
|
|
91 | (4) |
|
5.3.1 Pressure in an Ideal Gas |
|
|
92 | (2) |
|
|
94 | (1) |
|
|
95 | (3) |
|
|
98 | (4) |
|
5.5.1 Mean Free Path and Collision Time |
|
|
98 | (2) |
|
|
100 | (2) |
|
|
102 | (1) |
|
|
103 | (1) |
|
|
104 | (3) |
|
6 The Grand Canonical Ensemble |
|
|
107 | (18) |
|
|
107 | (4) |
|
|
109 | (2) |
|
6.2 Grand Canonical Partition Function |
|
|
111 | (4) |
|
|
112 | (2) |
|
6.2.2 Derivatives of the Grand Potential |
|
|
114 | (1) |
|
|
115 | (3) |
|
6.3.1 Fermions in a Two-Level System |
|
|
115 | (2) |
|
6.3.2 The Langmuir Adsorption Isotherm |
|
|
117 | (1) |
|
6.4 Chemical Equilibrium and the Law of Mass Action |
|
|
118 | (3) |
|
6.4.1 The Law of Mass Action |
|
|
119 | (2) |
|
|
121 | (1) |
|
|
122 | (3) |
|
7 Quantum Statistical Mechanics |
|
|
125 | (14) |
|
|
125 | (2) |
|
7.2 Distinguishable Particles and Maxwell-Boltzmann Statistics |
|
|
127 | (2) |
|
7.2.1 Maxwell-Boltzmann Statistics |
|
|
128 | (1) |
|
7.3 Quantum Particles in the Grand Canonical Ensemble |
|
|
129 | (4) |
|
7.3.1 Fermi-Dirac Distribution |
|
|
131 | (1) |
|
7.3.2 Bose-Einstein Distribution |
|
|
132 | (1) |
|
7.4 Density of States and Thermal Averages |
|
|
133 | (3) |
|
7.4.1 Thermal Averages Using the Density of States |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
137 | (2) |
|
|
139 | (22) |
|
8.1 Chemical Potential for Fermions |
|
|
139 | (5) |
|
8.1.1 Zero Temperature: The Fermi Energy |
|
|
139 | (1) |
|
8.1.2 Non-zero Temperature: Sommerfeld Expansion |
|
|
140 | (3) |
|
8.1.3 Temperature Dependence of the Chemical Potential |
|
|
143 | (1) |
|
8.2 Thermodynamic Properties of a Fermi Gas |
|
|
144 | (4) |
|
8.2.1 Energy and Heat Capacity |
|
|
144 | (1) |
|
8.2.2 Pressure of a Fermi Gas |
|
|
145 | (1) |
|
8.2.3 Entropy of a Fermi Gas |
|
|
146 | (1) |
|
8.2.4 Number Fluctuations |
|
|
147 | (1) |
|
8.2.5 Another View of Temperature Dependence of Thermodynamic Properties |
|
|
148 | (1) |
|
|
148 | (9) |
|
8.3.1 Metals and the Fermi Sea |
|
|
148 | (3) |
|
|
151 | (6) |
|
|
157 | (1) |
|
|
157 | (1) |
|
|
157 | (4) |
|
|
161 | (29) |
|
9.1 Photons and Blackbody Radiation |
|
|
161 | (9) |
|
9.1.1 Blackbody Radiation |
|
|
162 | (1) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
164 | (3) |
|
9.1.5 Example: Cosmic Microwave Background Radiation |
|
|
167 | (1) |
|
|
168 | (1) |
|
9.1.7 Stefan-Boltzmann Law |
|
|
169 | (1) |
|
9.2 Bose-Einstein Condensation |
|
|
170 | (6) |
|
|
174 | (2) |
|
9.3 Low-Temperature Properties of a Bose Gas |
|
|
176 | (4) |
|
|
176 | (1) |
|
9.3.2 Internal Energy and Heat Capacity |
|
|
177 | (3) |
|
9.4 Bosonic Excitations: Phonons and Magnons |
|
|
180 | (5) |
|
|
180 | (1) |
|
|
181 | (3) |
|
|
184 | (1) |
|
|
185 | (1) |
|
|
186 | (4) |
|
10 Phase Transitions and Order |
|
|
190 | (32) |
|
10.1 Introduction to the Ising Model |
|
|
190 | (3) |
|
10.2 Solution of the Ising Model |
|
|
193 | (9) |
|
10.2.1 Order Parameters and Broken Symmetry |
|
|
193 | (1) |
|
10.2.2 General Strategy for Solution of the Ising Model |
|
|
194 | (1) |
|
|
195 | (7) |
|
10.3 Role of Dimensionality |
|
|
202 | (3) |
|
|
202 | (1) |
|
|
203 | (2) |
|
10.4 Exact Solutions of the Ising Model |
|
|
205 | (4) |
|
10.4.1 Exact Solution in One Dimension |
|
|
205 | (3) |
|
10.4.2 Exact Solution in Two Dimensions |
|
|
208 | (1) |
|
10.5 Monte Carlo Simulation of the Ising Model |
|
|
209 | (3) |
|
10.5.1 Importance Sampling |
|
|
209 | (1) |
|
10.5.2 Metropolis Algorithm |
|
|
210 | (1) |
|
10.5.3 Initial Conditions and Equilibration |
|
|
210 | (2) |
|
10.6 Connection between the Ising Model and the Liquid-Gas Transition |
|
|
212 | (1) |
|
|
213 | (3) |
|
10.7.1 Symmetry-Breaking Fields |
|
|
214 | (2) |
|
10.7.2 Landau Theory and First-Order Phase Transitions |
|
|
216 | (1) |
|
|
216 | (1) |
|
|
217 | (5) |
|
Appendix A Gaussian Integrals and Stirling's Formula |
|
|
222 | (5) |
|
|
222 | (1) |
|
|
223 | (1) |
|
|
224 | (3) |
|
Appendix B Primer on Thermal Physics |
|
|
227 | (12) |
|
B.1 Thermodynamic Equilibrium |
|
|
227 | (4) |
|
B.1.1 Reversible and Irreversible Processes |
|
|
227 | (1) |
|
|
228 | (2) |
|
|
230 | (1) |
|
B.2 The Laws of Thermodynamics |
|
|
231 | (2) |
|
B.3 Thermodynamic Potentials |
|
|
233 | (3) |
|
B.3.1 Legendre Transforms and Free Energies |
|
|
235 | (1) |
|
|
236 | (3) |
|
B.4.1 Useful Partial Derivative Relations |
|
|
237 | (1) |
|
B.4.2 Example: Relationship between Cy and Cp |
|
|
238 | (1) |
|
Appendix C Heat Capacity Cusp in Bose Systems |
|
|
239 | (4) |
|
|
241 | (2) |
References |
|
243 | (1) |
Index |
|
244 | |