Atjaunināt sīkdatņu piekrišanu

E-grāmata: Essentials and Applications of Food Engineering

, (Indian Institute of Technology Madras, India)
  • Formāts: 802 pages
  • Izdošanas datums: 15-Mar-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9780429772382
  • Formāts - EPUB+DRM
  • Cena: 169,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 802 pages
  • Izdošanas datums: 15-Mar-2019
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9780429772382

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Essentials & Applications of Food Engineering provides a comprehensive understanding of food engineering operations and their practical and industrial utility. It presents pertinent case studies, solved numerical problems, and multiple choice questions in each chapter and serves as a ready reference for classroom teaching and exam preparations.

The first part of this textbook contains the introductory topics on units and dimensions, material balance, energy balance, and fluid flow. The second part deals with the theory and applications of heat and mass transfer, psychrometry, and reaction kinetics. The subsequent chapters of the book present the heat and mass transfer operations such as evaporation, drying, refrigeration, freezing, mixing, and separation. The final section focuses on the thermal, non-thermal, and nanotechnology-based novel food processing techniques, 3D food printing, active and intelligent food packaging, and fundamentals of CFD modeling.

Features











Features 28 case studies to provide a substantial understanding of the practical and industrial applications of various food engineering operations











Includes 178 solved numerical problems and 285 multiple choice questions











Highlights the application of mass balance in food product traceability and the importance of viscosity measurement in a variety of food products











Provides updated information on novel food processing techniques such as cold plasma, 3D food printing, nanospray drying, electrospraying, and electrospinning

The textbook is designed for undergraduate and graduate students pursuing Food Technology and Food Process Engineering courses. This book would also be of interest to course instructors and food industry professionals.
Preface xix
Acknowledgments xxi
Authors xxiii
1 Units and Dimensions 1(42)
1.1 The Glossary of Units and Dimensions
1(3)
1.2 Classification of Dimensions
4(5)
1.2.1 Definitions and Applications of Fundamental Dimensions in Food Processing
4(1)
1.2.2 Definitions and Applications of Derived Dimensions in Food Processing
5(4)
1.3 Classification of Unit Systems
9(6)
1.3.1 Absolute Unit System
9(1)
1.3.2 Technical Unit Systems
10(1)
1.3.3 Engineering Unit Systems
11(1)
1.3.4 International Unit System (SI)
11(4)
1.3.4.1 Definitions of Fundamental Units
11(2)
1.3.4.2 Definitions of Supplementary Units
13(1)
1.3.4.3 Definitions of Derived Units
13(1)
1.3.4.4 Prefixes for SI Units
14(1)
1.3.4.5 Guidelines to Write Units
15(1)
1.4 Conversion of Units
15(6)
1.4.1 Procedure for the Determination of Significant Digits and Rounding Off
18(3)
1.4.1.1 Rounding Procedure for Technical Documents or Specifications
18(1)
1.4.1.2 Rounding Practices Used for Packaged Goods in the Commercial Marketplace
19(1)
1.4.1.3 Rounding of Temperature Values
19(2)
1.5 Dimensional Analysis
21(7)
1.5.1 Dimension less Groups
21(2)
1.5.2 Dimensional Consistency
23(1)
1.5.3 Rayleigh's Theorem of Dimensional Analysis
24(1)
1.5.4 Buckingham's (Pi) Theorem of Dimensional Analysis
25(2)
1.5.5 Limitations of the Dimensional Analysis
27(1)
1.6 Problems to Practice
28(12)
1.6.1 Multiple Choice Questions
28(3)
1.6.2 Numerical Problems
31(9)
Bibliography
40(3)
2 Material Balance 43(36)
2.1 Terminologies and Definitions
43(2)
2.2 Fundamentals of Material Balance
45(1)
2.3 Classification of Material Balance Equations
46(1)
2.3.1 Steady-State Material Balance
46(1)
2.3.2 Unsteady-State Material Balance
46(1)
2.4 Methodology for Conducting a Material Balance Exercise
47(13)
2.4.1 Data Collection
47(1)
2.4.2 Construction of Block Diagram
47(1)
2.4.3 Selection of Basis and Tie Materials
47(1)
2.4.4 Setting Up the Equations of Material Balance
48(3)
2.4.4.1 Overall Mass Balance
48(1)
2.4.4.2 Component Mass Balance
48(1)
2.4.4.3 Recycle and Bypass
49(2)
2.4.5 Solving the Equations of Material Balance
51(1)
2.4.6 Material Balance for a Drying Process
51(2)
2.4.7 Material Balance for a Mixing Process
53(2)
2.4.8 Material Balance for an Evaporation Process
55(5)
2.5 Material Balance for Food Standardization
60(2)
2.6 Application of Material Balance in Food Product Traceability
62(1)
2.7 Problems to Practice
63(14)
2.7.1 Multiple Choice Questions
63(2)
2.7.2 Numerical Problems
65(12)
Bibliography
77(2)
3 Energy Balance 79(38)
3.1 Forms of Energy
79(3)
3.1.1 Potential Energy
80(1)
3.1.2 Kinetic Energy
80(1)
3.1.3 Internal Energy
81(1)
3.2 Heat Energy
82(5)
3.2.1 Specific Heat
82(2)
3.2.1.1 Siebel's Model
82(1)
3.2.1.2 Charm's Model
83(1)
3.2.1.3 Heldman and Singh Model
83(1)
3.2.1.4 Choi and Okos Model
83(1)
3.2.2 Enthalpy
84(2)
3.2.2.1 Enthalpy Models for Unfrozen Food
84(1)
3.2.2.2 Enthalpy Models for Frozen Food
84(2)
3.2.3 Heat Balance
86(4)
3.2.3.1 Sensible Heat
86(1)
3.2.3.2 Latent Heat
87(1)
3.3 The Principle of Energy Balance Calculation
87(1)
3.4 The Methodology of Energy Balance Calculation
88(2)
3.5 Steam and Its Properties
90(7)
3.5.1 Steam
90(1)
3.5.2 Formation of Steam
91(1)
3.5.3 Properties of Steam
92(2)
3.5.3.1 Specific Enthalpy of Steam
92(1)
3.5.3.2 Specific Entropy of Steam
92(1)
3.5.3.3 Dryness Fraction of Saturated Steam
92(1)
3.5.3.4 Quality of Steam
92(1)
3.5.3.5 Wetness Fraction of Steam
93(1)
3.5.3.6 Priming
93(1)
3.5.3.7 Density of Steam
93(1)
3.5.3.8 Specific Volume of Steam
93(1)
3.5.4 Steam Table
94(2)
3.5.4.1 Saturated Steam Table (Temperature-Based)
94(1)
3.5.4.2 Saturated Steam Table (Pressure-Based)
94(2)
3.5.4.3 Superheated Steam Table
96(1)
3.5.5 Mollier Diagram
96(1)
3.6 Energy Balance Calculations in Food Processing Plants
97(5)
3.6.1 Spray Drying of Milk (Dairy Industry)
98(3)
3.6.2 Pasteurization of Fruit Juice (Beverage Industry)
101(1)
3.7 Problems to Practice
102(13)
3.7.1 Multiple Choice Questions
102(4)
3.7.2 Numerical Problems
106(9)
Bibliography
115(2)
4 Fluid Flow 117(42)
4.1 Terminologies of Fluid Flow
117(1)
4.2 Properties of Fluids
118(1)
4.2.1 Mass Density or Density
118(1)
4.2.2 Specific Gravity
118(1)
4.3 The Concept of Viscosity
118(4)
4.3.1 Dynamic Viscosity
119(3)
4.3.1.1 Newtonian and Non-Newtonian Fluids
120(2)
4.3.2 Kinematic Viscosity
122(1)
4.4 Empirical Models Governing the Flow Behavior of Non-Newtonian Fluids
122(2)
4.4.1 Power Law Model
122(1)
4.4.2 Herschel-Bu I k ley Model
123(1)
4.4.3 Casson Model
123(1)
4.5 Temperature Dependence of Viscosity
124(1)
4.6 Measurement of Viscosity
125(4)
4.6.1 Bostwick Consistometer
125(1)
4.6.2 Capillary Tube Viscometer
126(1)
4.6.3 Rotational Viscometer
127(2)
4.6.3.1 Coaxial Cylinder Viscometer
127(1)
4.6.3.2 Cone and Plate Viscometer
128(1)
4.6.3.3 Parallel Plate Viscometer
128(1)
4.7 Viscosity as a Process and Quality Control Tool in the Food Industry
129(3)
4.7.1 Beer
129(2)
4.7.2 Chocolate
131(1)
4.7.3 Tomato Products
132(1)
4.8 Governing Laws of Fluid Flow
132(2)
4.8.1 Principle of Continuity
132(1)
4.8.2 Bernoulli's Equation
133(1)
4.9 Fluid Flow Regimes
134(2)
4.9.1 The Concept of Reynolds Number
134(1)
4.9.2 Laminar and Turbulent Flow
135(1)
4.10 Flow of Fluid through Pipes
136(4)
4.10.1 Entrance Region and Fully Developed Flow
136(1)
4.10.2 Velocity Profile in the Fully Developed Region
137(3)
4.11 Friction Force during Fluid Flow
140(1)
4.12 Flow Measuring Instruments
141(2)
4.12.1 Manometer
141(1)
4.12.2 Orifice Meter
142(1)
4.12.3 Venturi Meter
143(1)
4.12.4 Rotameter
143(1)
4.13 Pumps
143(4)
4.13.1 Types of Pumps
145(1)
4.13.1.1 Centrifugal Pumps
145(1)
4.13.1.2 Positive Displacement Pumps
145(1)
4.13.2 Selection Criteria for Pumps
146(1)
4.13.3 Energy Requirement of Pumps
147(1)
4.14 Problems to Practice
147(9)
4.14.1 Multiple Choice Questions
147(3)
4.14.2 Numerical Problems
150(6)
Bibliography
156(3)
5 Heat Transfer 159(62)
5.1 Theory of Heat Transfer
159(1)
5.1.1 Driving Force for Heat Transfer
159(1)
5.1.2 Resistance to Heat Transfer
160(1)
5.2 Classification of Heat Transfer Processes
160(1)
5.2.1 Steady-State Heat Transfer
160(1)
5.2.2 Unsteady-State Heat Transfer
160(1)
5.3 Mechanisms of Heat Transfer
161(45)
5.3.1 Heat Transfer by Conduction
161(12)
5.3.1.1 Fourier's Law of Conductive Heat Transfer
162(1)
5.3.1.2 Unsteady-State Heat Transfer by Conduction
163(1)
5.3.1.3 Thermal Properties of Foods
163(2)
5.3.1.4 Conductive Heat Transfer through a Rectangular Slab
165(2)
5.3.1.5 The Concept of Thermal Resistance
167(1)
5.3.1.6 Conductive Heat Transfer through a Composite Wall
168(3)
5.3.1.7 Conductive Heat Transfer through a Cylinder
171(2)
5.3.1.8 Conductive Heat Transfer through a Composite Cylinder
173(1)
5.3.2 Heat Transfer by Convection
173(30)
5.3.2.1 Newton's Law for Convective Heat Transfer
174(1)
5.3.2.2 Types of Convective Heat Transfer
175(9)
5.3.2.3 Estimation of Convective Heat Transfer Coefficient
184(1)
5.3.2.4 Thermal Resistance in Convective Heat Transfer
185(1)
5.3.2.5 Overall Heat Transfer Coefficient
185(4)
5.3.2.6 Unsteady-State Heat Transfer during Convection
189(1)
5.3.2.7 Heat Exchangers
189(14)
5.3.3 Heat Transfer by Radiation
203(3)
5.3.3.1 Principles of Radiative Heat Transfer
203(1)
5.3.3.2 Laws Governing the Radiative Heat Transfer
204(1)
5.3.3.3 The Concept of View Factor
205(1)
5.4 Problems to Practice
206(14)
5.4.1 Multiple Choice Questions
206(4)
5.4.2 Numerical Problems
210(10)
Bibliography
220(1)
6 Mass Transfer 221(24)
6.1 Criteria for the Classification of Mass Transfer Phenomena
221(9)
6.1.1 Phases Involved in Mass Transfer
221(1)
6.1.2 Modes of Mass Transfer
222(8)
6.1.2.1 Diffusive Mass Transfer
222(4)
6.1.2.2 Convective Mass Transfer
226(4)
6.2 Theories of Mass Transfer
230(3)
6.2.1 Two Film Theory
230(2)
6.2.2 Penetration Theory
232(1)
6.2.3 Surface Renewal Theory
233(1)
6.3 Laws of Mass Transfer
233(2)
6.3.1 Raoult's Law
233(1)
6.3.2 Henry's Law
233(5)
6.3.2.1 Applications of Henry's Law
234(1)
6.4 Analogies between Heat, Mass, and Momentum Transfer
235(3)
6.5 Problems to Practice
238(5)
6.5.1 Multiple Choice Questions
238(3)
6.5.2 Numerical Problems
241(2)
Bibliography
243(2)
7 Psychrometry 245(28)
7.1 The Governing Laws of Psychrometry
246(1)
7.1.1 The Ideal Gas Law (Perfect Gas Equation)
246(1)
7.1.2 Gibbs-Dalton Law of Partial Pressures
247(1)
7.1.3 The First Law of Thermodynamics
247(1)
7.2 The Terminologies of Psychrometry
247(3)
7.3 Properties of the Constituents of Moist Air
250(1)
7.3.1 Properties of Dry Air
250(1)
7.3.2 Properties of Water Vapor
251(1)
7.3.3 Adiabatic Saturation of Air
251(1)
7.4 Psychrometric Chart
251(8)
7.4.1 Components of the Psychrometric Chart
252(1)
7.4.1.1 Lines of Dry-Bulb Temperature
252(1)
7.4.1.2 Lines of Constant Humidity
252(1)
7.4.1.3 Lines of Wet-Bulb Temperature
252(1)
7.4.1.4 Lines of Dew Point Temperature
253(1)
7.4.1.5 Lines of Relative Humidity
253(1)
7.4.1.6 Lines of Constant Enthalpy
253(1)
7.4.1.7 Lines of Constant Specific Volume
253(1)
7.4.2 Methodology for Using the Psychrometric Chart
253(2)
7.4.3 Applications of Psychrometry
255(4)
7.4.3.1 Heating
255(1)
7.4.3.2 Cooling
256(1)
7.4.3.3 Mixing
256(1)
7.4.3.4 Drying
256(1)
7.4.3.5 Heating-Cum-Humidification
256(1)
7.4.3.6 Cooling-Cum-Dehumidification
257(1)
7.4.3.7 Estimation of Wet-Bulb and Outlet Particle Temperatures
258(1)
7.5 Measurement of Psychrometric Properties
259(4)
7.5.1 Psychrometer
259(2)
7.5.2 Optical Dew Point Hygrometer
261(1)
7.5.3 Electric Hygrometer
262(1)
7.6 Problems to Practice
263(8)
7.6.1 Multiple Choice Questions
263(2)
7.6.2 Numerical Problems
265(6)
Bibliography
271(2)
8 Fundamentals and Applications of Reaction Kinetics 273(28)
8.1 Glossary of Reaction Kinetics
274(2)
8.2 Classification of Reactors
276(4)
8.2.1 Batch Reactors
276(1)
8.2.2 Continuous Reactors
276(4)
8.2.2.1 Continuous Stirred Tank Reactors
276(2)
8.2.2.2 Plug Flow Reactors
278(2)
8.2.3 Semi-Batch Reactors
280(1)
8.3 Classification of Reactions
280(3)
8.3.1 Zero-Order Reaction
280(1)
8.3.2 First-Order Reaction
281(1)
8.3.3 Second-Order Reaction
282(1)
8.3.4 nth Order Reaction
282(1)
8.4 Temperature Dependence of Reaction Rates
283(2)
8.4.1 Arrhenius Relationship
283(1)
8.4.2 Q10 Value
284(1)
8.4.3 z Value
285(1)
8.5 Applications of Reaction Kinetics
285(2)
8.5.1 Determination of Use-By Date by Kinetics Study
285(2)
8.5.1.1 Determination of Use-By Date for Packaged Guava Fruit Drink
286(1)
8.6 Problems to Practice
287(11)
8.6.1 Multiple Choice Questions
287(3)
8.6.2 Numerical Problems
290(8)
Bibliography
298(3)
9 Evaporation 301(44)
9.1 The General Principle of Evaporation
301(1)
9.2 Evaporator
302(2)
9.2.1 Components of Evaporator
303(1)
9.3 Boiling Point Elevation
304(1)
9.4 Mass and Energy Balance Around the Evaporator
305(1)
9.5 Evaporator Capacity and Steam Economy
306(1)
9.6 Types of Evaporators
306(12)
9.6.1 Batch Pan Evaporator
307(1)
9.6.1.1 Application of Pan Evaporator in Jam Manufacturing
307(1)
9.6.2 Tubular Evaporators
308(5)
9.6.2.1 Natural Circulation Evaporator
309(4)
9.6.3 Forced Circulation Evaporator
313(2)
9.6.3.1 Application of Forced Circulation Evaporator in the Manufacturing of Sweetened Condensed Milk
314(1)
9.6.4 Scraped Surface Evaporator
315(2)
9.6.4.1 Application of Scraped Surface Evaporator in the Concentration of Tomato Pulp
316(1)
9.6.5 Plate Evaporator
317(1)
9.6.5.1 Application of Plate Evaporator in the Dairy Industry
318(1)
9.7 Approaches to Improve Evaporator Efficiency
318(14)
9.7.1 Multiple-Effect Evaporation
319(4)
9.7.1.1 Feeding of Multiple-Effect Evaporators
319(4)
9.7.2 Design of Multiple-Effect Evaporators
323(7)
9.7.2.1 Mass and Energy Balance
323(1)
9.7.2.2 Determination of BPE
324(1)
9.7.2.3 Calculation of Overall Temperature Difference and Heat Transfer Areas for Each Effect
324(3)
9.7.2.4 Economic Analysis
327(3)
9.7.3 Vapor Recompression
330(2)
9.7.3.1 Mechanical Vapor Recompression
330(1)
9.7.3.2 Thermal Vapor Recompression
331(1)
9.8 Problems to Practice
332(9)
9.8.1 Multiple Choice Questions
332(4)
9.8.2 Numerical Problems
336(5)
Bibliography
341(4)
10 Drying 345(90)
10.1 Theory of Drying
345(6)
10.1.1 Phase Diagram of Water
345(1)
10.1.2 Moisture Content
346(3)
10.1.2.1 Moisture Sorption Isotherm
347(2)
10.1.3 The Concept of Simultaneous Heat and Mass Transfer
349(2)
10.2 Drying Rate Curve
351(1)
10.2.1 Constant Rate Period
351(1)
10.2.2 Falling Rate Period
351(1)
10.2.3 Factors Influencing the Drying Rate
352(1)
10.3 Classification of Dryers
352(58)
10.3.1 Cabinet Tray Dryer
352(2)
10.3.1.1 Construction and Working of Cabinet Tray Dryer
353(1)
10.3.1.2 Advantages and Limitations of Cabinet Tray Dryer
353(1)
10.3.2 Vacuum Dryer
354(1)
10.3.2.1 Construction and Working of Vacuum Dryer
354(1)
10.3.2.2 Advantages and Limitations of Vacuum Dryer
354(1)
10.3.3 Tunnel Dryer
354(1)
10.3.4 Conveyor Belt Dryer
355(1)
10.3.5 Fluidized Bed Dryer
355(8)
10.3.5.1 Theory of Fluidization
355(4)
10.3.5.2 Working of a Fluidized Bed Dryer
359(1)
10.3.5.3 Mathematical Models for Fluidized Bed Drying
360(3)
10.3.6 Drum Drying
363(1)
10.3.7 Spray Drying
363(12)
10.3.7.1 Components of a Spray Dryer and Their Functions
363(2)
10.3.7.2 Stages Involved in Spray Drying
365(7)
10.3.7.3 Mass and Energy Balance around the Spray Dryer
372(2)
10.3.7.4 Advantages and Limitations of Spray Drying
374(1)
10.3.7.5 Applications of Spray Drying
375(1)
10.3.8 Freeze Dryer
375(2)
10.3.8.1 Freezing
375(1)
10.3.8.2 Primary Drying
375(1)
10.3.8.3 Secondary Drying
376(1)
10.3.8.4 Final Treatment
376(1)
10.3.9 Superheated Steam Dryer
377(3)
10.3.9.1 Working Principle of Superheated Steam Dryer
377(2)
10.3.9.2 Construction of Superheated Steam Dryer
379(1)
10.3.9.3 Advantages and Limitations of Superheated Steam Dryer
379(1)
10.3.9.4 Major Applications of SSD in the Food Industry
380(1)
10.3.10 Supercritical Dryer
380(2)
10.3.10.1 Working Principle of Supercritical Dryer
380(1)
10.3.10.2 Construction of a Supercritical Dryer
381(1)
10.3.10.3 Major Applications of Supercritical Dryer in the Food Industry
382(1)
10.3.11 Dielectric Dryers
382(3)
10.3.11.1 Microwave Dryer
382(1)
10.3.11.2 Radiofrequency Dryer
383(2)
10.3.12 Infrared Dryer
385(3)
10.3.12.1 Working Principle of Infrared Dryer
385(1)
10.3.12.2 Construction of Infrared Dryer
385(3)
10.3.13 Heat Pump Dryer
388(1)
10.3.13.1 Working Principle of Heat Pump Dryer
388(1)
10.3.13.2 Construction and Working of Heat Pump Dryer
389(1)
10.3.14 Refractance Window Dryer
389(3)
10.3.14.1 Working Principle of Refractance Window Dryer
389(3)
10.3.14.2 Construction of a Refractance Window Dryer
392(1)
10.3.15 Hybrid Drying Techniques
392(18)
10.3.15.1 Spray-Freeze-Drying
396(3)
10.3.15.2 Spray-Fluidized Bed Drying
399(11)
10.4 Selection of Dryer
410(6)
10.4.1 Thermal Efficiency
410(2)
10.4.2 Drying Time
412(2)
10.4.3 Dryer Economics
414(2)
10.4.3.1 Annualized Cost
414(1)
10.4.3.2 Life-Cycle Savings
415(1)
10.4.3.3 Payback Period
416(1)
10.5 Problems to Practice
416(10)
10.5.1 Multiple Choice Questions
416(3)
10.5.2 Numerical Problems
419(7)
Bibliography
426(9)
11 Refrigeration and Freezing of Foods 435(38)
11.1 Glossary of Food Refrigeration and Freezing
435(1)
11.2 Refrigeration of Foods
436(11)
11.2.1 Refrigerants
436(3)
11.2.2 Theory of Mechanical Refrigeration System
439(2)
11.2.2.1 Components of a Mechanical Refrigeration System
439(2)
11.2.3 Pressure-Enthalpy Charts
441(1)
11.2.4 Mathematical Expressions for Calculations in Mechanical Refrigeration
442(2)
11.2.4.1 Cooling Load
442(1)
11.2.4.2 Coefficient of Performance
442(1)
11.2.4.3 Refrigerant Flow Rate
443(1)
11.2.4.4 Work Done by the Compressor
443(1)
11.2.4.5 Heat Exchanged in the Condenser and Evaporator
443(1)
11.2.4.6 Refrigeration Effect
443(1)
11.2.4.7 Theoretical Power to Drive the Compressor
443(1)
11.2.4.8 Power per Unit Ton of Refrigeration Capacity
443(1)
11.2.5 Calculation of Cooling Time
444(3)
11.2.5.1 For Liquid Food Products
444(1)
11.2.5.2 For Solid Food Products
444(3)
11.3 Freezing of Foods
447(12)
11.3.1 Theory of Freezing
447(1)
11.3.2 Freezing Time
448(5)
11.3.2.1 Calculation of Freezing Time
449(4)
11.3.3 Types of Freezing Equipment
453(6)
11.3.3.1 Plate Freezers
453(2)
11.3.3.2 Air-Blast Freezers
455(1)
11.3.3.3 Fluidized Bed Freezer
456(1)
11.3.3.4 Scraped Surface Freezers
457(1)
11.3.3.5 Immersion Freezers
458(1)
11.3.3.6 Cryogenic Freezers
458(1)
11.3.3.7 Still Air Freezers
458(1)
11.4 Refrigerated Transportation of Foods
459(2)
11.4.1 Vehicle
459(1)
11.4.2 Refrigeration Unit
460(1)
11.4.3 Air Delivery Systems
461(1)
11.5 Problems to Practice
461(9)
11.5.1 Multiple Choice Questions
461(3)
11.5.2 Numerical Problems
464(6)
Bibliography
470(3)
12 Mixing and Separation Processes 473(82)
12.1 Mixing
473(20)
12.1.1 Classification of Food Mixing
473(1)
12.1.2 Theory of Solid Mixing
474(5)
12.1.2.1 Convective Mixing
475(1)
12.1.2.2 Diffusive Mixing
475(1)
12.1.2.3 Shear Mixing
475(1)
12.1.2.4 Assessing Mixedness during Solid Mixing
476(3)
12.1.3 Theory of Liquid Mixing
479(3)
12.1.3.1 Low-Viscosity Liquids
479(1)
12.1.3.2 High-Viscosity Liquids, Pastes, and Dough
480(2)
12.1.4 Theory of Gas-Liquid Mixing
482(2)
12.1.4.1 Structure Development by Gas-Liquid Mixing: A Case Study on Dough Mixing during Breadmaking Process
483(1)
12.1.5 Mixing Equipment
484(9)
12.1.5.1 Mixers for Solid-Solid Mixing (or) Powder Mixers
484(4)
12.1.5.2 Mixers for Liquid-Liquid Mixing and Dispersal of Solids in Liquids
488(3)
12.1.5.3 Mixers for Semisolids (Dough and Paste Mixers)
491(2)
12.2 Separation Processes
493(16)
12.2.1 Filtration
493(16)
12.2.1.1 Filtration Rate
493(1)
12.2.1.2 Constant Rate Filtration
494(1)
12.2.1.3 Constant Pressure Drop Filtration
495(2)
12.2.1.4 Filter Media
497(1)
12.2.1.5 Filter Aid
498(1)
12.2.1.6 Filtration Equipment
498(11)
12.3 Centrifugation
509(12)
12.3.1 Derivation of Expression for the Centrifugal Force Acting on a Particle
509(3)
12.3.2 Derivation for the Centrifugal Velocity of the Particle
512(4)
12.3.3 Equipment for Centrifugation
516(3)
12.3.3.1 Disk Bowl Centrifuge
516(1)
12.3.3.2 Tubular Centrifuge
516(1)
12.3.3.3 Decanter Centrifuge
516(1)
12.3.3.4 Hydrocyclone
517(1)
12.3.3.5 Cyclone
518(1)
12.3.4 Case Study: Applications of Centrifugation in the Dairy Industry
519(2)
12.3.4.1 Skimming
519(2)
12.3.4.2 Clarification
521(1)
12.4 Leaching
521(5)
12.4.1 Single-Stage Leaching
523(1)
12.4.2 Countercurrent Multiple-Stage Leaching
523(1)
12.4.3 Leaching Equipment
524(1)
12.4.3.1 Fixed Bed Extractor
524(1)
12.4.3.2 Boll man Extractor
525(1)
12.4.4 Applications of Leaching in Food Processing
525(1)
12.4.5 Case Study: Application of Leaching in Instant Coffee Manufacturing
526(1)
12.5 Aqueous Two-Phase Extraction (ATPE)
526(6)
12.5.1 Principle of Separation in ATPE
526(3)
12.5.2 Factors Influencing Separation in ATPE
529(1)
12.5.3 Case Study: Application of ATPE for Recovery of Proteins from Whey
530(2)
12.6 Distillation
532(8)
12.6.1 McCabe-Thiele Method
532(5)
12.6.1.1 Rectifying Section
534(1)
12.6.1.2 Stripping Section
534(1)
12.6.1.3 Steps Involved in Constructing the McCabe-Thiele Diagram and Calculation of the Number of Stages
535(2)
12.6.2 Equipment for Distillation
537(2)
12.6.2.1 Batch Distillation
537(1)
12.6.2.2 Fractional Distillation
537(1)
12.6.2.3 Steam Distillation
537(2)
12.6.3 Applications of Distillation in Food Processing
539(1)
12.6.4 Case Study: Application of Distillation in the Production of Alcoholic Beverages
539(1)
12.7 Problems to Practice
540(9)
12.7.1 Multiple Choice Questions
540(3)
12.7.2 Numerical Problems
543(6)
Bibliography
549(6)
13 Thermal Processing of Foods 555(32)
13.1 Classification of Thermal Processing Techniques
555(2)
13.2 Pasteurization
557(6)
13.2.1 Definition
557(1)
13.2.2 Classification of the Pasteurization Process
557(6)
13.2.2.1 Batch Pasteurization
558(1)
13.2.2.2 Continuous-Flow Pasteurization
558(5)
13.3 Blanching
563(3)
13.3.1 Definition, Principle, and Applications of Blanching
563(1)
13.3.2 Blanching Equipment
564(2)
13.3.2.1 Steam Blancher
564(1)
13.3.2.2 Hot Water Blancher
565(1)
13.4 Commercial Sterilization
566(3)
13.4.1 Batch Retort System
566(2)
13.4.2 Continuous Retort System
568(1)
13.4.2.1 Hydrostatic Retort System
568(1)
13.4.2.2 Aseptic Processing
568(1)
13.5 Thermal Process Calculations
569(7)
13.5.1 The Microbial Survivor Curve and D value
569(2)
13.5.2 Thermal Resistance Constant (z Value)
571(1)
13.5.3 Thermal Death Time (F Value)
572(4)
13.5.3.1 Methods to Determine the Process Lethality (F0 Value)
572(4)
13.6 Problems to Practice
576(9)
13.6.1 Multiple Choice Questions
576(4)
13.6.2 Numerical Problems
580(5)
Bibliography
585(2)
14 Nonthermal and Alternative Food Processing Technologies 587(64)
14.1 Nonthermal Techniques for Food Processing
587(18)
14.1.1 High-Pressure Processing (HPP)
587(4)
14.1.1.1 Principle of HPP
587(1)
14.1.1.2 Methodology of HPP
588(1)
14.1.1.3 Equipment for HPP
588(2)
14.1.1.4 Significant Operational Factors of HPP System
590(1)
14.1.1.5 Advantages of HPP
590(1)
14.1.2 Cold Plasma
591(9)
14.1.2.1 The Concept of Cold Plasma Technology
591(3)
14.1.2.2 Cold Plasma Equipment
594(1)
14.1.2.3 Method of Cold Plasma Generation
595(1)
14.1.2.4 Advantages and Limitations of Cold Plasma Technology
596(4)
14.1.3 Pulsed Electric Field Processing
600(5)
14.1.3.1 The Concept of Pulsed Electric Field Processing
600(1)
14.1.3.2 Factors Affecting Microbial Inactivation by PEF Treatment
601(1)
14.1.3.3 Advantages and Limitations of PEF Processing
602(3)
14.2 Electromagnetic Radiation-Based Food Processing Techniques
605(13)
14.2.1 Infrared Heating
605(4)
14.2.1.1 The Principle of Infrared (IR) Heating
605(2)
14.2.1.2 Advantages of IR Heating
607(1)
14.2.1.3 Limitations of IR Heating
608(1)
14.2.1.4 Food Processing Applications of IR Heating
608(1)
14.2.2 Dielectric Heating
609(9)
14.2.2.1 Microwave Heating
610(3)
14.2.2.2 Radiofrequency Heating
613(5)
14.3 Ohmic Heating
618(5)
14.3.1 Principle of Ohmic Heating
618(1)
14.3.2 Ohmic Heating System
618(1)
14.3.3 Applications of Ohmic Heating in Food Processing
619(4)
14.3.3.1 Sterilization and Pasteurization
619(1)
14.3.3.2 Extraction of Bioactive Compounds
620(1)
14.3.3.3 Microbial Inactivation
620(1)
14.3.3.4 Thawing
620(1)
14.3.3.5 Detection of Starch Gelatinization
620(3)
14.4 Nanotechnology-Based Food Processing Techniques
623(9)
14.4.1 Nanospray Drying
623(5)
14.4.1.1 Working Principle of Nanospray Dryer
623(1)
14.4.1.2 Vibrating Mesh Atomization
624(1)
14.4.1.3 Heating Mode, Hot Air Flow Pattern, and Configuration of the Spray Chamber
624(2)
14.4.1.4 Product Separation by the Electrostatic Precipitator (ESP)
626(1)
14.4.1.5 Applications of Nanospray Drying in Food Processing
627(1)
14.4.2 Electrohydrodynamic Techniques: Electrospraying and Electrospinning
628(4)
14.5 3D Food Printing
632(7)
14.5.1 Rationale and Advantages of 3D Food Printing Technology
633(1)
14.5.1.1 Creation of Personalized Food Products
633(1)
14.5.1.2 Enhancement in the Efficiency and Flexibility of Food Production
633(1)
14.5.1.3 Designing Novel Foods Using Alternative Ingredients
633(1)
14.5.2 Principle and Classification of 3D Food Printers
633(4)
14.5.2.1 Extrusion
634(1)
14.5.2.2 Inkjet Printers
635(1)
14.5.2.3 Powder Binding Deposition
636(1)
14.5.3 Types of Materials for 3D Food Printing
637(2)
14.5.3.1 Natively Printable Materials
637(1)
14.5.3.2 Non-Printable Materials
637(2)
14.5.4 Challenges in 3D Food Printing
639(1)
Bibliography
639(12)
15 Food Packaging 651(46)
15.1 Functions of Food Packaging
651(1)
15.2 Types of Food Packaging Materials
652(9)
15.2.1 Biopolymers
652(6)
15.2.2 Bionanocomposites
658(3)
15.3 Innovative Food Packaging Technologies
661(10)
15.3.1 Active Packaging
661(4)
15.3.1.1 Oxygen Scavengers
662(2)
15.3.1.2 Carbon Dioxide Absorbers and Emitters
664(1)
15.3.1.3 Moisture Control Agents
664(1)
15.3.1.4 Antimicrobials
664(1)
15.3.1.5 Ethylene Scavengers
665(1)
15.3.2 Intelligent Packaging
665(4)
15.3.2.1 Barcodes
665(2)
15.3.2.2 Radio Frequency Identification
667(1)
15.3.2.3 Time Temperature Indicators
668(1)
15.3.2.4 Seal and Leak Indicators
668(1)
15.3.2.5 Freshness Indicators
669(1)
15.3.2.6 Temperature Control: Self-Heating and Self-Cooling Packaging
669(1)
15.3.3 Modified Atmosphere Packaging
669(1)
15.3.4 Controlled Atmosphere Packaging
670(1)
15.3.5 Aseptic Packaging
670(1)
15.4 Mass Transfer in Food Packaging
671(5)
15.4.1 Permeation
671(2)
15.4.2 Diffusion
673(1)
15.4.3 Absorption
673(2)
15.4.4 Oxygen Transmission Rate
675(1)
15.4.5 Water Vapor Transmission Rate
675(1)
15.5 Quality Evaluation of Packaging Materials
676(8)
15.5.1 Conditioning of Samples
677(1)
15.5.2 Basic Quality Tests for Packaging Materials
678(1)
15.5.2.1 Grammage
678(1)
15.5.2.2 Thickness
678(1)
15.5.2.3 Water Penetration
678(1)
15.5.3 Tensile Strength
679(2)
15.5.3.1 Seal Strength
679(1)
15.5.3.2 Peel Test or Interlayer Bond Strength
680(1)
15.5.3.3 Tear Strength
680(1)
15.5.3.4 Puncture or Penetration Resistance
680(1)
15.5.4 Leak Test
681(1)
15.5.4.1 Dry Test
681(1)
15.5.4.2 Wet Test
681(1)
15.5.5 Bursting Strength
682(1)
15.5.6 Compression Strength
682(1)
15.5.7 Drop Test
682(1)
15.5.8 Grease Resistance
683(1)
15.5.9 Permeation Tests
683(1)
15.6 Problems to Practice
684(6)
15.6.1 Multiple Choice Questions
684(3)
15.6.2 Numerical Problems
687(3)
Bibliography
690(7)
16 Fundamentals of Computational Fluid Dynamics Modeling and Its Applications in Food Processing 697(50)
16.1 Theory of CFD Modeling
698(16)
16.1.1 Navier-Stokes Equations
699(15)
16.1.1.1 Conservation of Mass Equation
699(2)
16.1.1.2 Conservation of Momentum Equation
701(4)
16.1.1.3 Conservation of Energy Equation
705(9)
16.2 Numerical Methods in CFD Modeling
714(3)
16.2.1 Finite Element Method
714(3)
16.2.2 Finite Volume Method
717(1)
16.2.3 Finite Difference Method
717(1)
16.3 Reference Frames in CFD Modeling
717(2)
16.3.1 Volume of Fluid
717(1)
16.3.2 Eulerian-Eulerian
718(1)
16.3.3 Eulerian-Lagrangian
718(1)
16.4 Steps in CFD Modeling
719(6)
16.4.1 Preprocessing
719(1)
16.4.2 Solving
720(1)
16.4.3 Post-Processing
720(1)
16.4.4 Steps in CFD Modeling: A Case Study on Heat and Mass Transfer during Potato Drying
720(5)
16.5 An Overview of CFD Applications in Food Processing
725(17)
16.5.1 CFD Modeling of Canned Milk Pasteurization
726(5)
16.5.2 CFD Modeling of the Thermal Pasteurization of Egg
731(3)
16.5.2.1 Geometry Creation and Meshing
731(1)
16.5.2.2 Solving
731(2)
16.5.2.3 Post-Processing
733(1)
16.5.3 Spray Drying
734(4)
16.5.3.1 Droplet/Particle Trajectory
736(1)
16.5.3.2 Droplet Temperature
736(1)
16.5.3.3 Droplet Residence Time
737(1)
16.5.4 CFD Modeling of Bread Baking Process
738(4)
Bibliography
742(5)
Appendix I: Saturated Water and Steam (Temperature) Tables 747(4)
Appendix II: Saturated Water and Steam (Pressure) Tables 751(6)
Appendix III: Specific Volume of Superheated Steam 757(2)
Appendix IV: Specific Enthalpy of Superheated Steam 759(2)
Appendix V: Specific Entropy of Superheated Steam 761(2)
Index 763
C. Anandharamakrishnan is currently Principal Scientist in the Food Engineering Department of the CSIR Central Food Technological Research Institute, Mysore, India. He completed his Doctoral degree in Chemical Engineering (2004-2008) from Loughborough University, United Kingdom. For his doctoral thesis, he has worked on the Experimental and Computational Fluid Dynamics studies on spray-freeze-drying and spray drying of proteins. He has published more than 50 articles in peer reviewed international journals, 9 National and International patents, 3 books and 6 book chapters. He has expertise in the fields of micro and nanoencapsulation of food bioactive compounds by spray drying and electrospraying/electrospinning techniques and computational modeling of bread baking, spray drying and spray-freeze-drying. He is an editor of Journal of Food Science and Technology.



Padma Ishwarya S., Phd, is Research Fellow of the Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysore, India, where she received her PhD in food engineering. With C. Anandharamakrishnan, she edited a book for John Wiley & Sons titled Spray Drying Techniques for Food Ingredient Encapsulation. She has published 4 book chapters and 8 journal articles. Her industry experience includes working with Nestle India Ltd., where she was the Finished goods coordinator for quality assurance of coffee & beverages.