Atjaunināt sīkdatņu piekrišanu

Essentials of Hydraulic Fracturing: Vertical and Horizontal Wellbores [Hardback]

  • Formāts: Hardback, 690 pages, height x width x depth: 279x215x38 mm, weight: 2532 g
  • Izdošanas datums: 31-Mar-2017
  • Izdevniecība: PennWell Books
  • ISBN-10: 1593703570
  • ISBN-13: 9781593703578
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 227,68 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 690 pages, height x width x depth: 279x215x38 mm, weight: 2532 g
  • Izdošanas datums: 31-Mar-2017
  • Izdevniecība: PennWell Books
  • ISBN-10: 1593703570
  • ISBN-13: 9781593703578
Citas grāmatas par šo tēmu:
Consolidating old and new material to appeal to both current and future fracturing design engineers, Veatch, Holditch, and King present a basic understanding of hydraulic fracture propagation behavior, of the effects of fracturing on post-treatment oil well production, and of aspects pertinent to fracture treatment design application. They also include insights and methods for applying that knowledge to achieve maximum economic returns to owners from a fracturing treatment. Among their topics are rock mechanics and properties, fracturing fluid loss to the formation, and proppants and fracture conductivity. Annotation ©2017 Ringgold, Inc., Portland, OR (protoview.com)
Preface xi
Acknowledgments xiii
1 Introduction 1(34)
Hydraulic Fracturing
2(5)
The Primary Hydraulic Fracturing Treatment Goal
7(2)
The Typical Concept versus the Actual Fracture
9(6)
Treatment Implementation Aspects
15(3)
Non-Stimulation Fracturing Applications and Considerations
18(1)
Controllable Factors Pertinent to Hydraulic Fracturing Treatment Design
19(1)
Treatment Design Factors Imposed by Nature
20(2)
A Successful Fracturing Treatment?
22(2)
Refracturing of Previously Hydraulically Fractured Wells
24(1)
Environmental Impacts of Hydraulic Fracturing Treatments
24(2)
Disciplines Pertinent to Hydraulic Fracturing
26(1)
The Design Engineer's Job
27(1)
Hydraulic Fracturing in the Future-Let's Do It Right!
28(2)
Issues to Be Addressed
30(2)
Implications for the Future
32(1)
References
32(3)
2 Overview: Important Fracture Design Aspects 35(80)
Factors Pertinent to Fracturing Behavior and Economics
35(2)
Preliminary Post-Fracture Production Estimates
37(25)
Formation Permeability Distribution
62(2)
Mechanical Rock Properties and In Situ Stress
64(15)
Fracture Propagation Behavior and Patterns-Near-Wellbore and Far-Field Regions
79(1)
Formation Composition and Temperature
80(3)
Fracturing Fluid Loss to the Formation
83(3)
Fracturing Fluid System Rheology, Viscosity, and Proppant Transport
86(7)
Propping Agents and Fracture Conductivity
93(9)
Overview Commentary
102(1)
Exercises
103(7)
Nomenclature
110(2)
References
112(3)
3 Rock Mechanics and Fracture Propagation: Rock Properties-In Situ Stresses, Net Fracturing Pressures, and Fracture Geometry 115(84)
Mechanical Rock Properties and In Situ Stresses in Fracture Propagation Models
116(2)
Mechanical Rock Properties Basic to Hydraulic Fracturing Behavior
118(14)
In Situ Stress
132(17)
Net Fracturing Pressure
149(4)
In Situ Stress and Net Fracturing Pressure Effects on Fracture Height, Width, Penetration, and Volumetric Propagation Geometry
153(1)
Calculating Fracture Height with In Situ Stress Profile Data
154(8)
Pore Pressure Effects on In Situ Stress and Fracture Propagation Behavior
162(7)
Interval Interface Slippage, Ductility and Fluid-Loss Confining Effects
169(1)
Fracture Width
169(9)
Fracture Volume Calculations from Width, Height, and Lateral Penetration
178(1)
Fracturing in Horizontal Wellbores
179(1)
Hydraulic Fracturing Studies with a Quasi Three-Dimensional Rock Mechanics (Q-3D-RM) Spreadsheet Model
179(9)
Summary of Data Acquisition Pertinent to Mechanical Rock Properties, In Situ Stresses, and Net Fracturing Pressures
188(2)
Exercises
190(5)
Nomenclature
195(1)
References
196(3)
4 Fracturing Fluid Systems 199(22)
Design Engineer and Service Company Engineer Interaction
201(1)
Fracturing Fluid System Requirements
202(1)
Selecting a Fracturing Fluid System
203(2)
Types of Fluid Systems
205(2)
Fluid System Databases
207(1)
Base Fluid System Components
207(4)
Fracturing Fluid System Performance Control Agents
211(4)
Decision Flowcharts to Facilitate and Accelerate Fluid System Selection
215(2)
Particle Fraction Effect on Viscosity
217(1)
Comments from Outside Reviewers
217(1)
The Expanding World of Fracturing Fluid Systems and Additives
218(1)
Exercises
219(1)
Resources
219(1)
References
219(2)
5 Fracturing Fluid Loss to the Formation 221(52)
Total Fluid Loss
222(1)
Terminology: Laboratory-Determined Spurt-Loss and Fluid-Loss Coefficient, and Field-Determined Fracturing Efficiency, Total Fluid-Loss Coefficient
223(2)
Determining Fluid-Loss Behavior
225(29)
Formation Permeability, Gel Concentration, Temperature, and Additives
254(2)
C VC versus Pressure Differential between the Fracture and the Reservoir
256(3)
Fluid System Viscosity Increase by Virtue of Fluid Loss
259(1)
Effect of Fluid Shear on Fluid Loss
260(1)
Reducing Floss into Vugs, Joints, Fissures, Fractures, Faults
261(1)
Pad Volumes Calculated from Fracturing Fluid Efficiency
262(3)
Summary of Fluid-loss Considerations for Fracture Treatment Design
265(2)
Data and Information Resources for Fluid-loss Behavior
267(1)
Exercises
268(2)
Nomenclature
270(1)
Resources
271(1)
References
271(2)
6 Fracturing Fluid System Rheology and Proppant Transport 273(108)
In-Fracture Fluid System Temperature-Wellbore to Fracture Tip
274(2)
Approaches to Fluid System In-Fracture Temperature Distribution
276(2)
Algorithms for In-Fracture Temperature Calculations
278(2)
Whitsitt and Dysart approach
280(3)
Apparent Viscosity
283(2)
Fluid System Behavior
285(5)
Resources for Fluid System Apparent Viscosity and Rheology Data
290(1)
Developing Equations for Fracturing Fluid Systems Rheology Behavior
291(29)
Temperature and Shear Rate Effects on Apparent Viscosity Behavior
320(7)
Apparent Viscosity of Foam Fluid Systems
327(2)
Fluid System Apparent Viscosity Increase due to Proppant Concentration
329(4)
Hydraulic Horsepower Injection Requirements
333(5)
Tubular Friction Loss during Injection
338(12)
Friction Loss (Turbulent Tubular Flow)-Proppant-Laden Slurries
350(10)
Proppant Transport
360(3)
Proppant Transport In Fractures
363(3)
Laboratory Proppant Transport Testing Developments After 1990
366(4)
Fluid System Pumping, Staging, and Scheduling Considerations
370(1)
Flowback-Fluid System Recovery and Cleanup Enhancement
371(1)
Mitigating Microcrack Gumming in the Formation
372(1)
Summary of Considerations for Fluid System Flow Behavior and Proppant Transport
372(1)
Data and Information Resources (Hard Copy, Website, etc.)
373(1)
Exercises
374(2)
Nomenclature
376(2)
Resources
378(1)
References
378(3)
7 Proppants and Fracture Conductivity 381(70)
Proppants
382(21)
Fracture Permeability and Conductivity
403(11)
Proppant Transport, Closed Fracture Width, and Proppant Specific Gravity
414(3)
Economic Perspectives of Fracture Conductivity
417(11)
Closed Fracture Width versus Proppant Concentration and Post-Fracture Production
428(14)
Proppant Selection Criteria
442(2)
Data Sources: Specifications for Fracture Permeability and Conductivity
444(1)
Acknowledgments
445(1)
Exercises
445(1)
Nomenclature
446(1)
Resources
447(1)
References
448(3)
8 Fracture Propagation Computer Models 451(54)
Model Types
451(1)
Model Evolution
452(1)
About Model Fracturing Treatment Designs
453(1)
Model Supplements
453(1)
Model Availability
453(1)
Model Development History
453(5)
Model Augmentations and Supplemental Features
458(1)
Model-Construction, Capability, Applicability
458(24)
Modelling Fracture Propagation Blunting
482(2)
Modeling-Simultaneous Multi-Interval Propagation-Vertical or Deviated Wellbore
484(6)
Fluid Loss and Rheology Effects
490(2)
Treatment Designs-Predictions versus In Situ Propagation
492(2)
Selecting the Appropriate Model for Design
494(1)
Model Design Limitations and Validation
495(2)
Recommended Fracturing Model Treatment Design and Analysis Practices
497(2)
Supplemental Comments by Outside Reviewers
499(1)
Fracturing Model Resources
499(1)
Exercises
500(4)
References
504(1)
9 Fracture Treatment Design, Implementation, and Post-Fracture Operations 505(46)
Twelve Points to Improve Fracturing Success and Economic Returns
505(4)
General Treatment Design Phases
509(3)
Candidacy Considerations
512(1)
Pre-Design Activities
513(6)
Data Acquisition Programs for Pre-Fracture Treatment Design
519(2)
Treatment Design
521(3)
Scenario Designs
524(2)
Final Economic Optimized Treatment Design
526(1)
Treatment Implementation Planning
527(14)
Management Involvement
541(1)
Onsite Fracturing Treatment Implementation
542(1)
Programs for Improving Economic Returns on Future Wells
543(4)
Fracture Design Data and Analysis Resources
547(1)
Exercises
548(2)
Nomenclature
550(1)
10 Pre-Fracture Treatment: Model Design Examples 551(66)
Model Design Practices
551(1)
Fracturing Economic Returns
552(1)
About Treatment Designs: Vertical versus Horizontal Wellbores
552(1)
About the Examples
553(2)
Model Approaches-Treatment Design Sequences
555(1)
Model Description
556(2)
Example 10-1 Description, Data, and Design Process
558(39)
GOHFER Model Treatment Design
597(1)
Example 10-1 Description and Design Considerations
598(11)
Potential for Enhanced Economics by Propping Outside the Pay
609(1)
Summary of Results for Examples 10-1 and 10-2, and Ideas for Redesign
610(1)
Considerations for Treatment Redesign
611(1)
Commentary on Pre-Fracture Treatment Designs with Models
612(2)
Exercises
614(1)
Nomenclature
615(1)
Reference
615(2)
11 Fracturing Horizontal Wellbores 617(50)
Introduction
617(2)
Fracturing Technology
619(4)
Fracture Orientation
623(4)
Complex and Planar Fractures
627(6)
Well Spacing and Orientation
633(1)
Placement of Fractures
634(4)
Stress Factors Affecting Fracturing from Horizontal Wells
638(3)
Completion Design
641(1)
Microseismic and Other Monitoring Methods
641(1)
Perforating Horizontal Wells for Fracturing
642(1)
Fracturing
643(1)
Fracture Initiation and Early Fracture Growth
643(5)
Rate
648(1)
Fracture Extension and Later Stage Fracturing Behavior
649(2)
Simultaneous and Sequential Fracturing
651(1)
Refracturing
652(1)
Fracture Hits
653(1)
Fracture Flowback
654(3)
References
657(10)
12 Fracturing Diagnostics 667(36)
Fracturing Diagnostic Methods
668(2)
Near-Wellbore Vertical Fracture Extent
670(9)
Post-Fracture Wellbore In-Flow Production Profiling
679(3)
Fracture Propagation Azimuth and Propagation Geometry
682(18)
Commentary on Fracturing Diagnostics
700(1)
References
701(2)
Appendix A: Fracture Vertical Height Calculations 703(12)
Descriptions and Comparisons of Figures A-1, A-2-1, and A-2-2
705(2)
Utility of the Height Growth Curves
707(1)
Regression of the Height Growth Curve Data
707(1)
The hS/h Calculation Approach
708(1)
Calculating Relative Fracture Heights, hS/h, as a Function of f (sigma,Pf) and DeltasigmaR
708(4)
Preferential Downward versus Upward Vertical Growth
712(1)
Bounding Intervals with Multiple Layers Where sigma, E, and KIC Vary from Layer to Layer
713(1)
Conclusions
713(1)
Nomenclature
714(1)
Appendix B: A Quasi-Three-Dimensional Rock Mechanics Spreadhseet (Q-3D-RMS) Model 715(24)
Differences between the Q-3D-RMS and Planar Three-Dimensional (P-3D) Models
716(1)
Q-3D-RMS Model Input Data
716(1)
Relative Fluid Viscosity Behavior and Retained DeltaPf/DeltaXf
717(2)
Well Injection Pressure (Pw)
719(1)
Creating and Using a Q-3D-RMS Model
719(1)
Fracturing Intervals in a Q-3D-RMS Model
720(1)
Q-3D-RMS versus Other Models
721(1)
Q-3D-RMS Model Vertical and Horizontal Configuration
721(3)
Q-3D-RMS Model Calculations
724(4)
Q-3D-RMS Spreadsheet Model Calculations Using
Chapter 3, Example 3-15 Data
728(7)
Commentary about this Q-3D-RMS Spreadsheet Model
735(1)
Nomenclature
736(3)
Appendix C: Example Spreadsheet Program for Fracturing Fluid Efficiency and SIPD Type-Curve Fluid-Loss Coefficient Calculations 739(16)
Spreadsheet Calculations of Fracturing Fluid Efficiency
740(1)
Spreadsheet Applicable Master Type-Curves
741(2)
Spreadsheet Processing of SIPD Data
743(12)
Appendix D: Bibliography for
Chapter 11
755(8)
Answers to Selected Exercises 763(18)
Index 781(30)
About the Authors 811