Atjaunināt sīkdatņu piekrišanu

E-grāmata: Essentials of Nonlinear Circuit Dynamics with MATLAB(R) and Laboratory Experiments

(University of Catania, Italy.), (University of Catania, Catania, Italy), (University of Catania, Italy.)
  • Formāts: 299 pages
  • Izdošanas datums: 07-Apr-2017
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351849739
  • Formāts - PDF+DRM
  • Cena: 57,60 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 299 pages
  • Izdošanas datums: 07-Apr-2017
  • Izdevniecība: CRC Press
  • Valoda: eng
  • ISBN-13: 9781351849739

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book deals with nonlinear dynamics of electronic circuits, which could be used in robot control, secure communications, sensors and synchronized networks. The genesis of the content is related to a course on complex adaptive systems that has been held at the University of Catania since 2005. The efforts are devoted in order to emulate with nonlinear electronic circuits nonlinear dynamics. Step-by-step methods show the essential concepts of complex systems by using the Varela diagrams and accompanying MATLAB® exercises to reinforce new information. Special attention has been devoted to chaotic systems and networks of chaotic circuits by exploring the fundamentals, such as synchronization and control. The aim of the book is to give to readers a comprehensive view of the main concepts of nonlinear dynamics to help them better understand complex systems and their control through the use of electronics devices.

Recenzijas

"This textbook offers a very comprehensive, very clear and unique course on nonlinear dynamics, synchronization and chaos control by using electronic circuits. The exercises, the numerical examples with MATLAB and laboratory experiments make it an extremely useful tool for under-graduated students or beginners in this domain." Franēoise Lamnabhi-Lagarrigue, CNRS, France

Preface ix
1 Introduction to nonlinear systems
1(14)
1.1 Classification of complex systems
1(3)
1.2 First-order systems
4(5)
1.2.1 Graphical analysis of equilibrium points
6(3)
1.3 Numerical solutions of differential equations
9(3)
1.3.1 Runge--Kutta methods
10(2)
1.4 Exercises
12(3)
2 The logistic map and elements of complex system dynamics
15(24)
2.1 The logistic map
15(2)
2.2 Equilibrium points and periodic solutions of the logistic map
17(5)
2.3 Chaos in the logistic map
22(2)
2.4 Intermittency
24(5)
2.5 Bifurcation diagram and Feigenbaum constant
29(3)
2.6 Characterizing elements of chaotic behavior
32(2)
2.6.1 Lyapunov exponents
33(1)
2.7 Exercises
34(5)
3 Bifurcations
39(24)
3.1 Introduction to bifurcations in dynamical systems
39(3)
3.2 Elementary bifurcations
42(13)
3.2.1 Supercritical pitchfork bifurcation
43(2)
3.2.2 Subcritical pitchfork bifurcation
45(2)
3.2.3 Saddle-node bifurcation
47(2)
3.2.4 Transcritical bifurcation
49(1)
3.2.5 Perturbed subcritical pitchfork bifurcation
50(2)
3.2.6 Imperfect bifurcations
52(3)
3.3 Bifurcations towards catastrophes
55(5)
3.4 Exercises
60(3)
4 Oscillators
63(44)
4.1 Hopf bifurcation
63(3)
4.2 Examples of oscillations and oscillators
66(2)
4.3 Genesis of electronic oscillators
68(5)
4.4 Lienard systems
73(1)
4.4.1 The Lienard's theorem
73(1)
4.5 Dynamics of the van der Pol oscillator
74(5)
4.6 Lur'e systems and the design of oscillators
79(1)
4.7 Describing functions: essential elements
80(7)
4.8 Hewlett oscillator
87(6)
4.9 2D maps
93(9)
4.9.1 The Henon map
93(3)
4.9.2 The Lozi map
96(1)
4.9.3 The Ikeda map
97(5)
4.10 Summary
102(1)
4.11 Exercises
102(5)
5 Strange attractors and continuous-time chaotic systems
107(44)
5.1 Features of chaos in continuous-time systems
108(5)
5.2 Genesis of chaotic oscillations: the Chua's circuit
113(6)
5.3 Canonical chaotic attractors and their bifurcation diagrams
119(9)
5.3.1 The Rossler system
119(3)
5.3.2 The Lorenz system
122(4)
5.3.3 Thomas' cyclically symmetric attractor
126(2)
5.4 Further essential aspects of chaotic systems
128(10)
5.4.1 Computation of the Lyapunov spectrum
129(5)
5.4.2 The d∞ parameter
134(2)
5.4.3 Peak-to-peak dynamics
136(1)
5.4.4 Reconstruction of the attractor
137(1)
5.5 Chaotic dynamics in Lur'e systems
138(5)
5.6 Hyperchaotic circuits
143(3)
5.7 Summary
146(1)
5.8 Exercises
147(4)
6 Cellular nonlinear networks
151(40)
6.1 CNN: basic notations
152(5)
6.2 CNNs: main aspects
157(1)
6.3 Cloning templates and features of CNNs
158(9)
6.3.1 A simple software implementation of a CNN
159(6)
6.3.2 Choice of the templates
165(2)
6.4 The CNN as a generator of nonlinear dynamics
167(4)
6.4.1 Discrete component realization of SC-CNN cells
168(1)
6.4.2 Chua's circuit dynamics generated by the SC-CNN cells
169(2)
6.4.3 A generalized cell for realizing any multivariable non-linearities using PWL functions
171(1)
6.5 Reaction-diffusion CNN
171(15)
6.5.1 The reaction CNN cell
172(2)
6.5.2 Two layer reaction-diffusion CNN
174(7)
6.5.3 Chua's circuit reaction-diffusion CNN
181(2)
6.5.4 Reaction-diffusion CNN as a network of cells
183(2)
6.5.5 Diffusive networks of multilayer CNN
185(1)
6.6 Summary
186(1)
6.7 Exercises
187(4)
7 Synchronization and chaos control
191(34)
7.1 Introduction
192(1)
7.2 Principles of synchronization of nonlinear dynamical systems
193(2)
7.3 Schemes for unidirectional synchronization
195(8)
7.3.1 Master-slave synchronization by system decomposition
196(2)
7.3.2 Master-slave synchronization by linear feedback
198(2)
7.3.3 Master-slave synchronization by inverse system
200(3)
7.4 Synchronization via diffusive coupling
203(7)
7.5 Principles of chaos control
210(1)
7.6 Strategies for chaos control
211(7)
7.6.1 Adaptation of accessible system parameters
211(1)
7.6.2 Entrainment control
212(1)
7.6.3 Weak periodic perturbation
212(1)
7.6.4 Feedback control
213(1)
7.6.5 The OGY approach
213(2)
7.6.6 Noise for chaos control
215(3)
7.7 Uncertain large-scale nonlinear circuits: spatio-temporal chaos control
218(2)
7.8 General remarks on chaos control
220(2)
7.9 Exercises
222(3)
8 Experiments and applications
225(54)
8.1 Hewlett oscillator
227(1)
8.2 Van der Pol oscillator
228(3)
8.3 An "elegant" oscillator
231(1)
8.4 Synchronization of two Hewlett oscillators
232(2)
8.5 Multilayer CNN cell with slow-fast dynamics for RD-CNN
234(1)
8.6 Non-autonomous multilayer CNN with chaotic behavior
234(3)
8.7 Multilayer SC-CNN with Chua's circuit dynamics
237(1)
8.8 Multilayer SC-CNN implementing hyperchaotic Chua's circuit dynamics
237(4)
8.9 A SC-CNN chaotic circuit with memristor
241(3)
8.10 Synchronization of two Chua's dynamics with diffusive coupling
244(2)
8.11 Chaos encryption
246(3)
8.12 Qualitative chaos-based sensors
249(3)
8.13 Chaos control experiment
252(2)
8.14 Logistic map with Arduino
254(4)
8.15 Networks of SC-CNN Chua's circuits
258(18)
8.15.1 Experiment series 1 --- parametric uncertainties
261(1)
8.15.1.1 Configuration 1
261(2)
8.15.1.2 Configuration 2
263(2)
8.15.1.3 Configuration 3
265(2)
8.15.1.4 Configuration 4
267(2)
8.15.2 Experiment series 2 --- different topologies
269(1)
8.15.2.1 Configuration 1
269(1)
8.15.2.2 Configuration 2
270(1)
8.15.2.3 Configuration 3
271(1)
8.15.2.4 Configuration 4
272(1)
8.15.3 Experiment series 3 --- effect of an external noise
273(1)
8.15.3.1 Configuration 1
273(1)
8.15.3.2 Configuration 2
273(3)
8.16 Exercises
276(3)
Bibliography 279(8)
Index 287
Arturo Buscarino graduated in Computer Science Engineering in 2004 and received his Ph.D. in Electronics and Automation Engineering in 2008, at the University of Catania, Italy. Currently, he is a Technical Assistant at the University of Catania and teaches Modeling and Optimization at the Laura Magistrale in Management Engineering. He collaborates with the EUROFusion Consortium, ENEA Frascati, and JET Culham, UK. Dr. Buscarino has been a visiting researcher at the University of Wisconsin-Madison, US. His scientific interests include nonlinear circuits and systems, chaos and synchronization, complex networks, control systems, Cellular Nonlinear Networks, and plasma engineering. He is Associate Editor of Cogent Engineering. Dr. Buscarino has published one research monography on nonlinear circuits, and more than 60 papers on refereed international journals and international conference proceedings.

Luigi Fortuna received the degree of electrical engineering (cum laude) from the University of Catania, Italy, in 1977. He is a Full Professor of System Theory at the University of Catania. From 2005 to 2012, he was the Dean of the Engineering Faculty. He has been a visiting researcher at the Joint European Torus in Abingdon UK. He currently teaches complex adaptive systems and robust control. He has published 14 scientific books and 12 industrial patents. Dr. Fortuna has been a consultant of STMicroelectronics and other companies. He is the Editor in Chief of the SpringerBrief Series on Nonlinear Circuits. His scientific interests include robust control, Tokamak machine control, complex engineering, nonlinear circuits, chaos, cellular neural networks, robotics, and smart devices for control. Additionally, he is an IEEE Fellow.

Mattia Frasca graduated in Electronics Engineering in 2000 and received his Ph.D. in Electronics and Automation Engineering in 2003, at the University of Catania, Italy. Currently, he is a research associate at the University of Catania, where he also teaches process control. His scientific interests include nonlinear systems and chaos, complex networks, and bio-inspired robotics. He is Associate Editor of the International Journal of Bifurcations and Chaos, and Editor of Chaos, Solitons and Fractals. He is the general chair for the next edition of the European Conference on Circuits Theory and Design to be held in Catania. Additionally, he is co-author of one research monograph with Springer, three with World Scientific, and one book on Optimal and robust control with CRC Press. Dr. Frasca has published more than 250 papers on refereed international journals and international conference proceedings and is co-author of two international patents. He is an IEEE Senior and also a member of the Board of the Italian Society for Chaos and Complexity (SICC).