Atjaunināt sīkdatņu piekrišanu

E-grāmata: Essentials of Physical Chemistry

(Virginia Commonwealth University, Richmond, USA)
  • Formāts: 512 pages
  • Izdošanas datums: 27-Jul-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439896938
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 67,61 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 512 pages
  • Izdošanas datums: 27-Jul-2011
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781439896938
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

At a time when U.S. high school students are producing low scores in mathematics and science on international examinations, a thorough grounding in physical chemistry should not be considered optional for science undergraduates. Based on the authors thirty years of teaching, Essentials of Physical Chemistry merges coverage of calculus with chemistry and molecular physics in a friendly yet thorough manner. Reflecting the latest ACS guidelines, the book can be used as a one or two semester course, and includes special topics suitable for senior projects.

The book begins with a math and physics review to ensure all students start on the same level, and then discusses the basics of thermodynamics and kinetics with mathematics tuned to a level that stretches students abilities. It then provides material for an optional second semester course that shows students how to apply their enhanced mathematical skills in a brief historical development of the quantum mechanics of molecules. Emphasizing spectroscopy, the text is built on a foundation of quantum chemistry and more mathematical detail and examples. It contains sample classroom-tested exams to gauge how well students know how to use relevant formulas and to display successful understanding of key concepts.











Coupling the development of mathematical skills with chemistry concepts encourages students to learn mathematical derivations Mini-biographies of famous scientists make the presentation more interesting from a "people" point of view Stating the basic concepts of quantum chemistry in terms of analogies provides a pedagogically useful technique

Covering key topics such as the critical point of a van der Waals gas, the MichaelisMenten equation, and the entropy of mixing, this classroom-tested text highlights applications across the range of chemistry, forensic science, pre-medical science and chemical engineering. In a presentation of fundamental topics held together by clearly established mathematical models, the book supplies a quantitative discussion of the merged science of physical chemistry.
Preface xiii
Author xvii
List of Constants
xix
Periodic Table of the Elements xxi
Introduction: Mathematics and Physics Review xxiii
Chapter 1 Ideal and Real Gas Behavior
1(24)
Introduction to the "First Encounter with Physical Chemistry"
1(1)
Phenomenological Derivation of the Ideal Gas Equation
1(3)
Charles' (Jacques-Alexandre-Cesar Charles) Law
4(4)
Useful Units
8(2)
Molecular Weight from Gas Density (the Dumas Bulb Method)
10(1)
Dalton's Law of Partial Pressures
11(2)
Nonideal Gas Behavior
13(5)
Supercritical Fluid Chromatography
18(4)
Fluids
19(1)
Supercritical Fluid Instrumentation
20(1)
Supercritical Mobile Phase
21(1)
Sample SCF Separations
21(1)
Summary
22(1)
Problems
23(1)
References
24(1)
Chapter 2 Viscosity of Laminar Flow
25(12)
Introduction
25(3)
Measurement of Viscosity
28(2)
Viscosity of Blood
30(1)
Staudinger's Rule for Polymer Molecular Weight
31(3)
Summary
34(1)
Problems
35(1)
References
35(2)
Chapter 3 The Kinetic Molecular Theory of Gases
37(16)
Introduction
37(1)
Kinetic Assumptions of the Theory of Gases
37(2)
Weighted Averaging: A Very Important Concept
39(11)
Summary
50(1)
Problems
51(1)
References
51(2)
Chapter 4 The First Law of Thermodynamics
53(28)
Introduction
53(1)
Historical Development of Thermodynamics
53(1)
Definitions
54(1)
First Law of Thermodynamics
55(2)
Isothermal Processes
57(2)
Enthalpy and Heat Capacities
59(2)
Adiabatic Processes
61(3)
Adiabatic Nozzle Expansion Spectroscopy
64(1)
Diesel Engine Compression
65(2)
Calorimetry and Thermochemistry
67(4)
Hess's Law of Heat Summation
71(1)
Standard Heats of Formation at 298.15°K and 1 bar Pressure
72(1)
Temperature Dependence of Reaction Enthalpies
73(1)
Polynomial Curve Fitting
74(1)
Application to ΔH0rxn (T>298.15°K)
75(3)
Other Types of Thermochemistry
78(1)
Perspective
78(1)
Key Formulas and Equations
78(1)
Problems
79(1)
Testing, Grading, and Learning?
79(1)
References
80(1)
Chapter 5 The Second and Third Laws of Thermodynamics
81(22)
Introduction
81(1)
Carnot Cycle/Engine
81(5)
Carnot Cycle
83(2)
Carnot Efficiency
85(1)
Efficiency of Real Heat Engines
86(1)
Entropy and Spontaneity
87(1)
Summary of the Second Law of Thermodynamics
88(1)
Eight Basic Equations of Thermodynamics
88(2)
Third Law of Thermodynamics
90(5)
Entropy of Reactions
92(1)
Entropy Changes at T > 298.15°K
93(1)
Trouton's Rule/Observation
94(1)
Simple Statistical Treatment of Liquids and Gases
95(4)
Summary
99(1)
Testing, Grading, and Learning?
100(1)
Problems
101(1)
Bibliography
102(1)
References
102(1)
Chapter 6 Gibbs' Free Energy and Equilibria
103(30)
Introduction
103(3)
Temperature Dependence of Equilibrium Constants
106(1)
van't Hoff Equation
106(2)
Vapor Pressure of Liquids
108(4)
Phase Equilibria
112(1)
How Ice Skates Work
113(1)
Gibbs Phase Rule
113(2)
Iodine Triple Point
115(2)
(Cp-Cv) for Liquids and Solids
117(2)
Open Systems: Gibbs---Duhem Equation for Partial Molal Volumes
119(4)
Chemical Potential for Open Systems
123(2)
Modeling Liquids
125(3)
Summary
128(1)
Problems
129(1)
Testing, Grading, and Learning?
129(1)
Bibliography
130(1)
References
130(3)
Chapter 7 Basic Chemical Kinetics
133(22)
Introduction
133(1)
First-Order Reactions
133(2)
Promethium: An Introduction to Nuclear Chemistry
135(2)
Madame Curie and Radioactivity
137(2)
Radium
139(1)
Second-Order Rate Processes: [ A] = [ B]
139(1)
Second-Order Rate Processes: [ A] ≠ [ B]
139(6)
Arrhenius Activation Energy
145(2)
The Classic A → B → C Consecutive First-Order Reaction
147(3)
Splitting the Atom
150(3)
Problems
153(1)
References
154(1)
Chapter 8 More Kinetics and Some Mechanisms
155(26)
Introduction
155(1)
Beyond Arrhenius to the Eyring Transition State
155(4)
Example
159(2)
Graphical---Analytical Method for ΔH‡ and ΔS‡
161(2)
Summary of Graphical Method Results at T = 25°C
163(1)
Further Consideration of SN1 Solvolysis
164(1)
Chain Reactions and the Steady State
165(4)
Steady-State Example No. 1 H2 + Br2 → 2HBr
165(2)
Steady-State Example No. 2 Thermal Cracking of Acetaldehyde
167(1)
Steady-State Example No. 3 The Lindemann Mechanism
168(1)
Enzyme Kinetics
169(3)
Basic Michaelis---Menten Equation
171(1)
Example: A Hypothetical Enzyme
172(6)
Michaelis---Menten with Competitive Inhibitor
174(2)
Michaelis---Menten Summary
176(2)
Kinetics Conclusions
178(1)
Problems
178(1)
Testing, Grading, and Learning?
179(1)
Bibliography
180(1)
References
180(1)
Chapter 9 Basic Spectroscopy
181(32)
Introduction
181(1)
Planck's Discovery
181(3)
Radio Waves
183(1)
Balmer's Integer Formula
184(5)
A Very Useful Formula
189(1)
Preliminary Summary of the Bohr Atom
190(2)
Significance of the Bohr Quantum Number n
192(1)
Orbital Screening
192(1)
X-Ray Emission
193(3)
Forensic/Analytical Use of Auger X-Rays
196(2)
X-Ray Fluorescence
198(1)
X-Ray Diffraction
199(3)
Electronic Absorption Spectroscopy/Spectrophotometry
202(2)
Interpreting Electronic Spectra
204(5)
General Principles of Spectroscopy
209(1)
Problems
210(1)
Bibliography
210(1)
References
211(2)
Chapter 10 Early Experiments in Quantum Physics
213(20)
Introduction
213(1)
Stefan---Boltzmann Law: Relating Heat and Light---Part I
213(1)
Blackbody Radiation: Relating Heat and Light---Part II
214(7)
Photoelectric Effect
221(4)
De Broglie Matter Waves
225(1)
Davisson---Germer Experiment
226(4)
Summary
230(1)
Problems
231(1)
References
232(1)
Chapter 11 The Schrodinger Wave Equation
233(20)
Introduction
233(9)
Definition of a Commutator
242(1)
Postulates of Quantum Mechanics
243(1)
Particle on a Ring
244(3)
Comparison of PIB and POR Applications
247(1)
Additional Theorems in Quantum Mechanics
247(2)
Summary
249(1)
Problems
250(1)
Study, Test, and Learn?
251(1)
References
252(1)
Chapter 12 The Quantized Harmonic Oscillator: Vibrational Spectroscopy
253(24)
Introduction
253(2)
Harmonic Oscillator Details
255(3)
Harmonic Oscillator Results
258(4)
Reduced Mass
262(2)
Isotope Shift in the Vibrational Fundamental Frequency
264(1)
Hermite Recursion Rule
265(1)
Infrared Dipole Selection Rule
265(2)
3N --- 6 or 3N --- 5 Vibrations?
267(4)
Raman Spectroscopy
271(3)
Summary
274(1)
Problems
275(1)
References
275(2)
Chapter 13 The Quantized Rigid Rotor and the Vib-Rotor
277(30)
Introduction
277(1)
Three-Dimensional Particle-in-a-Box
277(2)
Rigid Rotor
279(6)
Key Step!
281(2)
Rigid Rotor Wave Functions
283(2)
Rigid Rotor Results
285(1)
Angular Wave Functions
285(1)
Angular Momentum
286(3)
Rotational Spectrum of CO
289(2)
Fourier Transform Spectrometry
291(1)
FT-IR Imaging and Microscopy
292(2)
Dipole Requirement
294(1)
Vib-Rotor Infrared Spectroscopy
295(7)
Bond Length of H-35/17Cl
302(1)
Summary
303(1)
Problems
304(1)
References
305(2)
Chapter 14 The Schrodinger Hydrogen Atom
307(24)
Introduction
307(1)
Strategy to Solve the Problem
307(3)
Associated Laguerre Polynomials
310(1)
Interpretation
311(5)
Pictures of Angular Orbitals
316(3)
Powell Equivalent d-Orbitals
319(4)
Unsold's Theorem
323(1)
Aufbau Principle and the Scaled H Atom
323(1)
Term Symbols and Spin Angular Momentum
324(1)
Hund's Rule
325(1)
|L, Sz⟩ versus |J, Jz⟩ Coupling
326(2)
Summary
328(1)
Problems
329(1)
References
329(2)
Chapter 15 Quantum Thermodynamics
331(14)
Introduction
331(2)
(Energy) Partition Function
333(1)
Average Translation Energy in One Dimension
334(1)
Average Rotational Energy of a Diatomic Molecule
334(1)
Average Vibrational Energy
335(2)
High-Temperature Limit for Vibrational Heat Capacity
337(1)
Heat Capacity of a Polyatomic Species: Water
337(2)
Combining Partition Functions
339(1)
Statistical Formulas for Other Thermodynamic Functions
340(1)
Statistical Formula for S(T)
340(1)
Sakur---Tetrode Formula for Absolute Entropy of a Gas
341(2)
Summary
343(1)
Problems
344(1)
References
344(1)
Chapter 16 Approximate Methods and Linear Algebra
345(22)
Introduction
345(1)
Simple First-Order Perturbation Theory
345(2)
Principles of Perturbation Theory
347(1)
Variation Method
348(2)
Molecular Orbitals and the Secular Equation
350(2)
Chemical Bonds of Ethylene
352(4)
Elementary Linear Algebra
356(3)
Unitary Similarity Diagonalization of a Square Hermitian Matrix
359(2)
Jacobi Algorithm for Diagonalization Using a Computer
361(1)
Order Matters!
361(1)
Summary
362(1)
Problems
363(1)
Testing, Grading, and Learning?
363(2)
Study, Test, and Learn?
365(1)
References
366(1)
Chapter 17 Electronic Structure of Molecules
367(36)
Introduction
367(1)
Hartree---Fock---Roothan LCAO Calculations
367(1)
Chemical Effects in Orbital Screening
368(2)
Many-Electron Wave Functions
370(1)
Determinantal Wave Functions for Many-Electron Systems
370(1)
Atomic Units
371(1)
Roothaan's LCAO Hartree---Fock Equation
372(3)
Electron Exchange Energy
373(1)
The Hartree---Fock---Roothaan Equations for 2n Electrons
374(1)
Practical Implementation and Examples
375(17)
SCF Iteration
377(1)
Gaussian Basis Sets
377(15)
Dipole Moment of BH
392(1)
Excited States of BH
392(1)
Mesoionic Bond Orders
393(6)
Summary
399(1)
Problems
399(2)
References
401(2)
Chapter 18 Point Group Theory and Electrospray Mass Spectrometry
403(20)
Introduction
403(1)
Basic Point Group Theory
403(7)
Calculation of Molecular Vibrations
410(2)
Future Development of Electrospray Mass Spectrometry?
412(2)
"Making Elephants Fly"
414(5)
Summary
419(1)
Problems
419(1)
References
420(3)
Chapter 19 Essentials of Nuclear Magnetic Resonance
423(26)
Introduction
423(1)
Early NMR Spectrometers
423(1)
NMR Spin Hamiltonian
424(3)
Forensic Application of 1D-NMR
427(3)
Nuclear Magnetic Resonance: Pulse Analysis
430(2)
Rotating Coordinate System
432(1)
Detection of Magnetic Fields
433(1)
Bloch Equations
434(4)
Complex Fourier Transform
438(1)
2D-NMR COSY
438(1)
Coherent Spectroscopy
439(1)
Product Operator COSY Analysis Using Dr. Brown's Automated Software
440(3)
Anatomy of a 2D Experiment
443(4)
Summary
447(1)
Problems
447(1)
References
447(2)
Appendix A Relation between Legendre and Associated Legendre Polynomials 449(2)
Appendix B The Hartree---Fock---Roothaan SCF Equation 451(6)
Appendix C Gaussian Lobe Basis Integrals 457(2)
Appendix D Spin-Orbit Coupling in the H Atom 459(6)
Index 465(10)
Use of PCLOBE 475
Don Shillady is a native of Montgomery County, Pennsylvania, U.S.A. He earned a B.S. in Chemistry from Drexel University, a Masters in Physical Chemistry from Princeton University and a Ph.D. in Physical Chemistry from the University of Virginia (1970). He has enjoyed teaching Physical Chemistry, Physical Chemistry Laboratory and Quantum Chemistry at Virginia Commonwealth University since 1970. He has edited three specialty monographs: one in Chemical Education and two on the Biological Effects of Electromagnetic Waves as well as coauthored a recent text "Electronic Molecular Structure, Connections Between Theory and Software" with Prof. Carl Trindle. He is now an emeritus Professor of Chemistry at Virginia Commonwealth University but still teaches a rapid two semester course in Physical Chemistry each summer at VCU. He has authored/coauthored 77 research publications and still maintains interest in properties of metal clusters, optical activity of large organic molecules, and Quantum Chemistry software.