Atjaunināt sīkdatņu piekrišanu

Etale Homotopy of Simplicial Schemes [Mīkstie vāki]

  • Formāts: Paperback / softback, 191 pages, height x width: 229x152 mm, weight: 28 g
  • Sērija : Annals of Mathematics Studies
  • Izdošanas datums: 21-Dec-1982
  • Izdevniecība: Princeton University Press
  • ISBN-10: 0691083177
  • ISBN-13: 9780691083179
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 100,23 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 191 pages, height x width: 229x152 mm, weight: 28 g
  • Sērija : Annals of Mathematics Studies
  • Izdošanas datums: 21-Dec-1982
  • Izdevniecība: Princeton University Press
  • ISBN-10: 0691083177
  • ISBN-13: 9780691083179
Citas grāmatas par šo tēmu:

This book presents a coherent account of the current status of etale homotopy theory, a topological theory introduced into abstract algebraic geometry by M. Artin and B. Mazur. Eric M. Friedlander presents many of his own applications of this theory to algebraic topology, finite Chevalley groups, and algebraic geometry. Of particular interest are the discussions concerning the Adams Conjecture, K-theories of finite fields, and Poincare duality. Because these applications have required repeated modifications of the original formulation of etale homotopy theory, the author provides a new treatment of the foundations which is more general and more precise than previous versions.


One purpose of this book is to offer the basic techniques and results of etale homotopy theory to topologists and algebraic geometers who may then apply the theory in their own work. With a view to such future applications, the author has introduced a number of new constructions (function complexes, relative homology and cohomology, generalized cohomology) which have immediately proved applicable to algebraic K-theory.

*Frontmatter, pg. 1*INTRODUCTION, pg. 3*1. ETALE SITE OF A SIMPLICIAL
SCHEME, pg. 7*2. SHEAVES AND COHOMOLOGY, pg. 13*3. COHOMOLOGY VIA
HYPERCOVERINGS, pg. 20*4. ETALE TOPOLOGICAL TYPE, pg. 31*5. HOMOTOPY
INVARIANTS, pg. 42*6. WEAK EQUIVALENCES, COMPLETIONS, AND HOMOTOPY LIMITS,
pg. 51*7. FINITENESS AND HOMOLOGY, pg. 63*8. COMPARISON OF HOMOTOPY TYPES,
pg. 70*9. APPLICATIONS TO TOPOLOGY, pg. 80*10. COMPARISON OF GEOMETRIC AND
HOMOTOPY THEORETIC FIBRES, pg. 90*11. APPLICATIONS TO GEOMETRY, pg. 103*12.
APPLICATIONS TO FINITE CHE VALLEY GROUPS, pg. 112*13. FUNCTION COMPLEXES, pg.
123*14. RELATIVE COHOMOLOGY, pg. 134*15. TUBULAR NEIGHBORHOODS, pg. 147*16.
GENERALIZED COHOMOLOGY, pg. 158*17. POINCARE DUALITY AND LOCALLY COMPACT
HOMOLOGY, pg. 170*REFERENCES, pg. 184*INDEX, pg. 188*Backmatter, pg. 191