Atjaunināt sīkdatņu piekrišanu

E-grāmata: Euler's Gem: The Polyhedron Formula and the Birth of Topology

4.28/5 (432 ratings by Goodreads)
  • Formāts: 336 pages
  • Sērija : Princeton Science Library
  • Izdošanas datums: 23-Jul-2019
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9780691191997
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 19,15 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 336 pages
  • Sērija : Princeton Science Library
  • Izdošanas datums: 23-Jul-2019
  • Izdevniecība: Princeton University Press
  • Valoda: eng
  • ISBN-13: 9780691191997
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

How a simple equation reshaped mathematics

Leonhard Euler’s polyhedron formula describes the structure of many objects—from soccer balls and gemstones to Buckminster Fuller’s buildings and giant all-carbon molecules. Yet Euler’s theorem is so simple it can be explained to a child. From ancient Greek geometry to today’s cutting-edge research, Euler’s Gem celebrates the discovery of Euler’s beloved polyhedron formula and its far-reaching impact on topology, the study of shapes. Using wonderful examples and numerous illustrations, David Richeson presents this mathematical idea’s many elegant and unexpected applications, such as showing why there is always some windless spot on earth, how to measure the acreage of a tree farm by counting trees, and how many crayons are needed to color any map. Filled with a who’s who of brilliant mathematicians who questioned, refined, and contributed to a remarkable theorem’s development, Euler’s Gem will fascinate every mathematics enthusiast. This paperback edition contains a new preface by the author.

Recenzijas

"Everything in the book is very well illustrated with insightful graphics that, together with the text, make results almost like being obvious."---Adhemar Bultheel, European Mathematical Society

Preface to the Princeton Science Library Edition ix
Preface xiii
Introduction 1(9)
Chapter 1 Leonhard Euler and His Three "Great" Friends
10(17)
Chapter 2 What Is a Polyhedron?
27(4)
Chapter 3 The Five Perfect Bodies
31(5)
Chapter 4 The Pythagorean Brotherhood and Plato's Atomic Theory
36(8)
Chapter 5 Euclid and His Elements
44(7)
Chapter 6 Kepler's Polyhedral Universe
51(12)
Chapter 7 Euler's Gem
63(12)
Chapter 8 Platonic Solids, Golf Balls, Fullerenes, and Geodesic Domes
75(6)
Chapter 9 Scooped by Descartes?
81(6)
Chapter 10 Legendre Gets It Right
87(13)
Chapter 11 A Stroll through Konigsberg
100(12)
Chapter 12 Cauchy's Flattened Polyhedra
112(7)
Chapter 13 Planar Graphs, Geoboards, and Brussels Sprouts
119(11)
Chapter 14 It's a Colorful World
130(15)
Chapter 15 New Problems and New Proofs
145(11)
Chapter 16 Rubber Sheets, Hollow Doughnuts, and Crazy Bottles
156(17)
Chapter 17 Are They the Same, or Are They Different?
173(13)
Chapter 18 A Knotty Problem
186(16)
Chapter 19 Combing the Hair on a Coconut
202(17)
Chapter 20 When Topology Controls Geometry
219(12)
Chapter 21 The Topology of Curvy Surfaces
231(10)
Chapter 22 Navigating in n Dimensions
241(12)
Chapter 23 Henri Poincare and the Ascendance of Topology
253(12)
Epilogue The Million-Dollar Question 265(6)
Acknowledgments 271(2)
Appendix A Build Your Own Polyhedra and Surfaces 273(10)
Appendix B Recommended Readings 283(4)
Notes 287(8)
References 295(14)
Illustration Credits 309(2)
Index 311
David S. Richeson is professor of mathematics at Dickinson College.