Atjaunināt sīkdatņu piekrišanu

E-grāmata: Evolution of Pervasive Information Systems

  • Formāts: EPUB+DRM
  • Izdošanas datums: 01-Jan-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031181764
  • Formāts - EPUB+DRM
  • Cena: 165,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Izdošanas datums: 01-Jan-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031181764

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book covers several aspects related the evolution of Information Systems into Pervasive Information Systems. New IT trends have an important impact on IT infrastructures, which become increasingly heterogeneous, flexible, and dynamic. These new trends are transforming Information Systems into what we call Pervasive Information Systems. The purpose of this book is to combine “state-of-the-art” solutions from various research communities (such as Information Systems Engineering, Cloud Computing, Fog/Edge Computing, Pervasive systems, Distributed systems, and Middleware systems) related to the Pervasive Information Systems emergence as a common point of view. Through these multiple contributions, this book tackles important challenges concerning Information Systems evolution, promoting a holistic view of Pervasive Information System.

Pervasive Information Systems (PIS) can be defined as a new class of Information Systems. It can be characterized by an IT that is gradually embedded in the physical environment and can accommodate the user’s requirements and desires when necessary. This evolution implies considering Information Systems beyond the organization's physical environment to integrate new technologies transparently, leading to a pervasive environment whose behavior should be more and more reactive & proactive. It corresponds to an important change in Information Systems Engineering. Pervasive Information Systems are deeply multidisciplinary systems, demanding a holistic view in which multiple domains are invited to contribute.


Chapter. 1. What is a Pervasive Information System (PIS)?.
Chapter.
2. Design and Modeling in Pervasive Information Systems.
Chapter. 3. The
context awareness challenges for PIS.
Chapter.
4. Middleware supporting PIS:
Requirements, solutions, and challenges.
Chapter. 5. Edge Computing and
Learning.
Chapter. 6. PIS: IoT & Industry 4.0 challenges.
Chapter. 7. PIS:
Interoperability and Decision-Making Process A Review.
Since September 2008, Manuele Kirsch Pinheiro is Associate Professor in the Computer Science Research Center (Centre de Recherche en Informatique) of the Université Paris 1 Panthéon Sorbonne. Previously, she occupied a post-doctoral position in Computer Science at the Katholieke Universiteit Leuven. She received her HDR (Habilitation pour Diriger les Recherches) at the Université Paris 1 Panthéon Sorbonne on 2021, and her PhD in Computer Science at the Université Joseph Fourier Grenoble I in 2006, as well as a MSC also in Computer Science at the Université Federal do Rio Grandedo Sul in 2001. Her research interests include Ubiquitous Computing, Context-aware Computing, Pervasive Information Systems, Cooperative Work (CSCW), and group awareness.Carine Souveyet has been a full professor at the University of Paris 1 Panthéon Sorbonne since 2008 and a member of the Computer Science Research Center (CRI) since 1991. Her research interests include the engineering of "Pervasive information systems" : how the engineering of traditional information systems must evolve to handle this new kind of Information system. Her academic career has also been distinguished by the awarding of the Distinction of Chevalier de l'Ordre National du Mérite by the Minister of Higher Education and Research in November 2019.Philippe Roose is associate-professor at E2S/University of Pau. He leads a bachelor in advanced computer science. He is the owner of 4 patents, two software licenses and has several experiences in technological transfers and collaborations with firms. He led several national & international projects and. He led around 20 PhD, and has more than 100 publications, mainly internationals. His research interests include Green Computing, Middleware and Context adaptation.Luiz Angelo Steffenel obtained a Ph.D. in Computer Science in 2005 at Institut National Polytechnique de Grenoble, France. In September 2007, he was recruited at Université de Reims Champagne-Ardenne, and in 2021 he was assigned Full Professor and Director of the LICIIS Laboratory. His research covers HPC, distributed computing, edge/fog computing, and Machine Learning and Deep Learning applied to domains such as biochemistry, atmospheric sciences, and smart agriculture. Among his recent projects, we can cite the H2020 AI4DI and Horizon Europe EdgeAI projects on AI applied to smartagriculture, the CAPES-Cofecub MESO project on big data and AI for atmospherical sciences, as well as the ANR E-COVISION project on COVID-19 forecasting.