Atjaunināt sīkdatņu piekrišanu

E-grāmata: Evolution of Silicon Sensor Technology in Particle Physics

  • Formāts: EPUB+DRM
  • Sērija : Springer Tracts in Modern Physics 275
  • Izdošanas datums: 06-Nov-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319644363
  • Formāts - EPUB+DRM
  • Cena: 154,65 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Springer Tracts in Modern Physics 275
  • Izdošanas datums: 06-Nov-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319644363

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This informative monograph describes the technological evolution of silicon detectors and their impact on high energy particle physics. The author here marshals his own first-hand experience in the development and also the realization of the DELPHI, CDF II and the CMS tracking detector. The basic principles of small strip- and pixel-detectors are presented and also the final large-scale applications. The Evolution of Silicon Detector Technology acquaints readers with the manifold challenges involving the design of sensors and pushing this technology to the limits. The expert will find critical information that is so far only available in various slide presentation scattered over the world wide web. This practical introduction of silicon sensor technology and its day to day life in the lab also offers many examples to illustrate problems and their solutions over several detector generations.
The new edition gives a detailed overview of the silicon sensor technology used at the LHC, from basic principles to actual implementation to lessons learned.
1 Basic Principles of a Silicon Detector
1(134)
1.1 Fundamental Silicon Properties
1(20)
1.1.1 Just Silicon and Some Impurities
3(5)
1.1.2 The pn-Junction
8(9)
1.1.3 SiO2
17(3)
1.1.4 Summary of Silicon Properties
20(1)
1.2 Ingredients to Use Silicon as Detector Basis
21(2)
1.3 Working Principle of a Silicon Tracking Device
23(15)
1.3.1 Charge Collection --- An Illustration
25(2)
1.3.2 Signal via Induction --- Shockley---Ramo Theorem
27(4)
1.3.3 Signal Charge and Particle Position
31(4)
1.3.4 n-Side Isolation of an n-in-n or n-in-p Sensors
35(3)
1.4 Single-Sided --- Double-Sided, Double Metal
38(3)
1.5 Noise Contributions
41(3)
1.6 Sensor Parameters
44(16)
1.6.1 Global Parameters
45(2)
1.6.2 Bias-, Guard- and Outside Protection Rings
47(3)
1.6.3 Design of Strip Parameters
50(10)
1.7 Practical Aspects of Handling and Testing Silicon Strip Devices
60(4)
1.7.1 What Is the Standard/Exhaustive Set of Quality Assurance Tests?
61(3)
1.8 R&D Methods and Tools: DLTS, TSC, TCT, Edge TCT, TPA-TCT, SIMS and Simulation
64(17)
1.8.1 Deep Level Transient Spectroscopy --- DLTS
65(4)
1.8.2 Thermally Stimulated Current --- TSC
69(2)
1.8.3 Transient Current Technique --- TCT
71(8)
1.8.4 Secondary Ion Mass Spectrometry --- SIMS
79(1)
1.8.5 Simulation
80(1)
1.9 Production of Silicon Sensors
81(14)
1.9.1 From Pure Sand to Detector Grade Silicon
82(2)
1.9.2 Processing
84(9)
1.9.3 Thinning
93(2)
1.10 Readout Electronics --- Strip ASICs
95(7)
1.11 Readout Electronics --- Pixel Readout Chips --- ROCs
102(4)
1.11.1 Chip Developments for the Future
106(1)
1.12 Other Silicon Detector Types
106(21)
1.12.1 Hybrid Pixels --- An Alternative with a High Number of Channels
107(1)
1.12.2 CMOS Detectors --- Monolithic Active Pixels --- MAPS
107(3)
1.12.3 Silicon on Insulator Detector --- SOI
110(2)
1.12.4 HV --- CMOS/HR --- CMOS
112(4)
1.12.5 Silicon Drift Detector
116(1)
1.12.6 Depleted Field Effect Transistors DEPFET Detectors
117(1)
1.12.7 3D Silicon Detectors
118(5)
1.12.8 Low Gain Avalanche Detectors --- LGAD
123(4)
1.12.9 Technology Advantage --- Disadvantage --- Usage
127(1)
1.13 Some Last Words About the Design of Detectors for High Energy Physics
127(1)
1.14 Some Always Unexpected Problems Along the Way
127(8)
2 Radiation Damage in Silicon Detector Devices
135(32)
2.1 Bulk Damage
135(13)
2.1.1 Damage by Particles
136(7)
2.1.2 Annealing --- Diffusion of Defects
143(5)
2.2 Defect Analysis, New Materials and Detector Engineering
148(16)
2.2.1 Study of Microscopic Defects and Their Impact on Macroscopic Parameters
150(3)
2.2.2 Different Materials and Different Radiation Types --- NIEL Violation
153(3)
2.2.3 Double Junction
156(4)
2.2.4 Sensors After Very High Radiation Levels
160(2)
2.2.5 Charge Amplification
162(2)
2.3 Surface Damage
164(3)
3 First Steps with Silicon Sensors: NA11 (Proof of Principle)
167(6)
3.1 From Semiconductor Detectors in the 1950s as Spectroscopes to First Tracking Devices in the 1980s
167(1)
3.2 Development of the First Silicon Strip Detector for High Energy Physics NA11 and NA32
168(3)
3.3 Distinguish c Quarks from Others
171(2)
4 The DELPHI Microvertex Detector at LEP
173(22)
4.1 Design and Strategies
173(4)
4.2 The DELPHI Microvertex Detector 1996/1997
177(6)
4.3 The Silicon Sensors of the DELPHI Microvertex Detector MVD
183(5)
4.4 Implementation of Silicon Labs in Universities to Build a Large Device
188(1)
4.5 Physics with the DELPHI Microvertex Detector
189(6)
5 CDF: The World's Largest Silicon Detector in the 20th Century; the First Silicon Detector at a Hadron Collider
195(24)
5.1 Historical Evolution of the CDF Vertex Detector
195(5)
5.2 Design, How to Cover |η ≤ 2| Without Endcap
200(10)
5.2.1 Tracking System
200(10)
5.3 Six Inch, a New Technology Step for Large Silicon Applications
210(4)
5.4 Lessons Learned from Operation
214(2)
5.5 The t Discovery, CP Violation in the b Quark Sector
216(3)
6 CMS: Increasing Size by 2 Orders of Magnitude
219(72)
6.1 The CMS Pixel Detector --- Phase 0 --- 2008 --- 2016
222(3)
6.2 The Pixel Phase I Upgrade --- Installed February/March 2017
225(6)
6.3 The CMS Silicon Strip Tracker --- SST
231(8)
6.4 Design, How to Survive 10 Years in the Radiation Environment of LHC
239(10)
6.4.1 Electronics --- Quarter Micron Technology
239(1)
6.4.2 Silicon Sensors
240(9)
6.5 Construction Issues for Large Detector Systems with Industry Involvement
249(8)
6.5.1 Quality Assurance and Problems During the Process
250(3)
6.5.2 Assembly
253(4)
6.6 Tracker Operation and Performance
257(25)
6.6.1 Lessons Learned from Operation and Maintenance
257(3)
6.6.2 Signal Processing, Some Key Figures and Tracking with the CMS Tracker
260(22)
6.7 Physics with the CMS Tracker and High-Level Trigger
282(9)
7 The Design of the CMS Upgrade Tracker and the CMS High Granularity Forward Calorimeter Equipped with Silicon Sensors for the HL-LHC
291(40)
7.1 The CMS Tracker Upgrade for the HL-LHC --- Phase II
293(26)
7.1.1 Sensors for the HL-LHC CMS Tracker
307(12)
7.2 The CMS Endcap Calorimeter Upgrade for the HL-LHC
319(12)
8 Continuing the Story: Detectors for a Future Linear Collider ILC or a Future Circular Collider FCC
331(10)
8.1 A Silicon Tracker for the International Linear Collider --- ILC
333(4)
8.2 The Next Big Future Circular Collider --- FCC
337(4)
9 Conclusion and Outlook
341(2)
Appendix A Glossary 343(6)
Appendix B Some Additional Figures 349(8)
References 357(14)
Index 371
Dr. Frank Hartmann is member of the detector group at the Compact Muon Solenoid (CMS) at the LHC (Large Hadron Collider) at CERN. He was heading the CMS Tracker project for eight years in the capacity of project manager or deputy project manager. Today, he coordinates the full CMS Upgrade for the High-Luminosity LHC. He teaches physics and detector science at the Karlsruhe Institute of Technology.