Atjaunināt sīkdatņu piekrišanu

E-grāmata: Exercises in Applied Mathematics: With a View toward Information Theory, Machine Learning, Wavelets, and Statistical Physics

  • Formāts: EPUB+DRM
  • Sērija : Chapman Mathematical Notes
  • Izdošanas datums: 09-May-2024
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783031518225
  • Formāts - EPUB+DRM
  • Cena: 107,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Chapman Mathematical Notes
  • Izdošanas datums: 09-May-2024
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783031518225

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This text presents a collection of mathematical exercises with the aim of guiding readers to study topics in statistical physics, equilibrium thermodynamics, information theory, and their various connections.  It explores essential tools from linear algebra, elementary functional analysis, and probability theory in detail and demonstrates their applications in topics such as entropy, machine learning, error-correcting codes, and quantum channels.  The theory of communication and signal theory are also in the background, and many exercises have been chosen from the theory of wavelets and machine learning.  Exercises are selected from a number of different domains, both theoretical and more applied.  Notes and other remarks provide motivation for the exercises, and hints and full solutions are given for many.  For senior undergraduate and beginning graduate students majoring in mathematics, physics, or engineering, this text will serve as a valuable guide as they move on to more advanced work.
Prologue.- Part I: Algebra.- Linear Algebra.- Positive Matrices.- Algebra and Error Correcting Codes.- Part II: Analysis.- Complements in Real and Complex Analysis.- Complements in Functional Analysis.- Part III: Probability and Applications.- Probability Theory.- Entropy: Discrete Case.- Thermodynamics.
Daniel Alpay was born in Paris (France) and has a double formation of electrical engineer (Telecom Paris) and theoretical mathematics (Weizmann Institute, Rehovot, Israel). His research interests are in hypercomplex analysis, operator theory, stochastic processes (in particular in the setting of infinite dimensional analysis) and mathematical physics. He wrote a number of research books and more than 300 papers. Building on his research, he wrote two exercises books on complex analysis. He was a chaired professor at Ben-Gurion University (Beer-Sheva, Israel) and is now Professor at Chapman University (Orange, California), where he holds the Foster G. and Mary McGaw Professorship in Mathematical Sciences.