Atjaunināt sīkdatņu piekrišanu

Explainable Artificial Intelligence Based on Neuro-Fuzzy Modeling with Applications in Finance 2021 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 167 pages, height x width: 235x155 mm, weight: 296 g, 72 Illustrations, color; 46 Illustrations, black and white; XIX, 167 p. 118 illus., 72 illus. in color., 1 Paperback / softback
  • Sērija : Studies in Computational Intelligence 964
  • Izdošanas datums: 09-Jun-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030755231
  • ISBN-13: 9783030755232
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 145,08 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 170,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 167 pages, height x width: 235x155 mm, weight: 296 g, 72 Illustrations, color; 46 Illustrations, black and white; XIX, 167 p. 118 illus., 72 illus. in color., 1 Paperback / softback
  • Sērija : Studies in Computational Intelligence 964
  • Izdošanas datums: 09-Jun-2022
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030755231
  • ISBN-13: 9783030755232
Citas grāmatas par šo tēmu:

The book proposes techniques, with an emphasis on the financial sector, which will make recommendation systems both accurate and explainable. The vast majority of AI models work like black box models. However, in many applications, e.g., medical diagnosis or venture capital investment recommendations, it is essential to explain the rationale behind AI systems decisions or recommendations. Therefore, the development of artificial intelligence cannot ignore the need for interpretable, transparent, and explainable models. First, the main idea of the explainable recommenders is outlined within the background of neuro-fuzzy systems. In turn, various novel recommenders are proposed, each characterized by achieving high accuracy with a reasonable number of interpretable fuzzy rules. The main part of the book is devoted to a very challenging problem of stock market recommendations. An original concept of the explainable recommender, based on patterns from previous transactions, is developed; it recommends stocks that fit the strategy of investors, and its recommendations are explainable for investment advisers.


Introduction.- Neuro-Fuzzy Approach and its Application in Recommender
Systems.- Novel Explainable Recommenders Based on Neuro-Fuzzy.- Explainable
Recommender for Investment Advisers.- Summary and Final Remarks.