Atjaunināt sīkdatņu piekrišanu

E-grāmata: Exploration of Visual Data

  • Formāts - PDF+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Exploration of Visual Data presents latest research efforts in the area of content-based exploration of image and video data. The main objective is to bridge the semantic gap between high-level concepts in the human mind and low-level features extractable by the machines.

The two key issues emphasized are "content-awareness" and "user-in-the-loop". The authors provide a comprehensive review on algorithms for visual feature extraction based on color, texture, shape, and structure, and techniques for incorporating such information to aid browsing, exploration, search, and streaming of image and video data. They also discuss issues related to the mixed use of textual and low-level visual features to facilitate more effective access of multimedia data.

Exploration of Visual Data provides state-of-the-art materials on the topics of content-based description of visual data, content-based low-bitrate video streaming, and latest asymmetric and nonlinear relevance feedback algorithms, which to date are unpublished.

Papildus informācija

Springer Book Archives
1. Introduction.- 1.1 Challenges.- 1.2 Research Scope.- 1.3
State-of-the-Art.- 1.4 Outline of Book.-
2. Overview of Visual Information
Representation.- 2.1 Color.- 2.2 Texture.- 2.3 Shape.- 2.4 Spatial Layout.-
2.5 Interest Points.- 2.6 Image Segmentation.- 2.7 Summary.-
3. Edge-Based
Structural Features.- 3.1 Visual Feature Representation.- 3.2 Edge-Based
Structural Features.- 3.3 Experiments and Analysis.-
4. Probabilistic Local
Structure Models.- 4.1 Introduction.- 4.2 The Proposed Modeling Scheme.- 4.3
Implementation Issues.- 4.4 Experiments and Discussion.- 4.5 Summary and
Discussion.-
5. Constructing Table-of-Content for Videos.- 5.1 Introduction.-
5.2 Related Work.- 5.3 The Proposed Approach.- 5.4 Determination of the
Parameters.- 5.5 Experimental Results.- 5.6 Conclusions.-
6. Nonlinearly
Sampled Video Streaming.- 6.1 Introduction.- 6.2 Problem Statement.- 6.3
Frame Saliency Scoring.- 6.4 Scenario and Assumptions.- 6.5 Minimum Buffer
Formulation.- 6.6 Limited-Buffer Formulation.- 6.7 Extensions and Analysis.-
6.8 Experimental Evaluation.- 6.9 Discussion.-
7. Relevance Feedback for
Visual Data Retrieval.- 7.1 The Need for User-in-the-Loop.- 7.2 Problem
Statement.- 7.3 Overview of Existing Techniques.- 7.4 Learning from Positive
Feedbacks.- 7.5 Adding Negative Feedbacks: Discriminant Analysis?.- 7.6
Biased Discriminant Analysis.- 7.7 Nonlinear Extensions Using Kernel and
Boosting.- 7.8 Comparisons and Analysis.- 7.9 Relevance Feedback on Image
Tiles.-
8. Toward Unification of Keywords and Low-Level Contents.- 8.1
Introduction.- 8.2 Joint Querying and Relevance Feedback.- 8.3 Learning
Semantic Relations between Keywords.- 8.4 Discussion.-
9. Future Research
Directions.- 9.1 Low-level and intermediate-level visual descriptors.- 9.2
Learning from user interactions.-9.3 Unsupervised detection of
patterns/events.- 9.4 Domain-specific applications.- References.