Atjaunināt sīkdatņu piekrišanu

Explorations in the Mathematics of Data Science: The Inaugural Volume of the Center for Approximation and Mathematical Data Analytics 2024 ed. [Hardback]

Edited by , Edited by
  • Formāts: Hardback, 286 pages, height x width: 235x155 mm, 20 Illustrations, color; 4 Illustrations, black and white; XIV, 286 p. 24 illus., 20 illus. in color., 1 Hardback
  • Sērija : Applied and Numerical Harmonic Analysis
  • Izdošanas datums: 13-Sep-2024
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3031664965
  • ISBN-13: 9783031664960
  • Hardback
  • Cena: 127,23 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 149,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 286 pages, height x width: 235x155 mm, 20 Illustrations, color; 4 Illustrations, black and white; XIV, 286 p. 24 illus., 20 illus. in color., 1 Hardback
  • Sērija : Applied and Numerical Harmonic Analysis
  • Izdošanas datums: 13-Sep-2024
  • Izdevniecība: Birkhauser Verlag AG
  • ISBN-10: 3031664965
  • ISBN-13: 9783031664960

This edited volume reports on the recent activities of the new Center for Approximation and Mathematical Data Analytics (CAMDA) at Texas A&M University. Chapters are based on talks from CAMDA’s inaugural conference – held in May 2023 – and its seminar series, as well as work performed by members of the Center. They showcase the interdisciplinary nature of data science, emphasizing its mathematical and theoretical foundations, especially those rooted in approximation theory.

Preface.- S-Procedure Relaxation: a Case of Exactness Involving
Chebyshev Centers.- Neural networks: deep, shallow, or in between?.-
Qualitative neural network approximation over R and C.- Linearly Embedding
Sparse Vectors from l2 to l1 via Deterministic Dimension-Reducing Maps.-
Ridge Function Machines.- Learning Collective Behaviors from Observation.-
Provably Accelerating Ill-Conditioned Low-Rank Estimation via Scaled Gradient
Descent, Even with Overparameterization.- CLAIRE: Scalable GPU-Accelerated
Algorithms for Diffeomorphic Image Registration in 3D.- A genomic tree based
sparse solver.- A qualitative difference between gradient flows of convex
functions in finite- and infinite-dimensional Hilbert spaces.