Atjaunināt sīkdatņu piekrišanu

Exploring Discrete Mathematics with Maple 4th ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, width: 185 mm, weight: 590 g, Illustrations
  • Izdošanas datums: 01-Jan-1997
  • Izdevniecība: McGraw-Hill Inc.,US
  • ISBN-10: 0070541280
  • ISBN-13: 9780070541283
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 47,34 €*
  • * Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena
  • Šī grāmata vairs netiek publicēta. Jums tiks paziņota lietotas grāmatas cena.
  • Daudzums:
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, width: 185 mm, weight: 590 g, Illustrations
  • Izdošanas datums: 01-Jan-1997
  • Izdevniecība: McGraw-Hill Inc.,US
  • ISBN-10: 0070541280
  • ISBN-13: 9780070541283
Citas grāmatas par šo tēmu:
Preface/Acknowledgments vii
Introduction 1(1)
Structure of This Volume
1(1)
Interactive Maple
2(3)
An Exmple
3(2)
A First Encounter with Maple
5(4)
An Interest Rate Problem
6(3)
Programming Preliminaries
9(2)
Getting Help
9(2)
Basic Programming Constructions
11(6)
Iteration
11(3)
Structuring
14(1)
Branching
15(2)
Premature Loop Exit
17(1)
Saving and Reading
17(1)
Executing System Programs within Maple
18(1)
Packages
18(3)
Maple Versions
21(1)
On-Line Material
21(1)
Using Anonymous FTP
22(1)
Maple Worksheets
22(1)
Communicating with the Authors
22(1)
Exercises/Problems
23(2)
Logic, Sets and Functions
25(28)
Logic
25(8)
Bit Operations
27(1)
Bit Strings
27(1)
A Maple Programming Example
28(1)
Loops and Truth Tables
29(3)
Using Maple to Check Logical Arguments
32(1)
Quantifiers and Propositions
33(3)
Sets
36(5)
Set Operations
38(3)
Functions and Maple
41(7)
Tables
41(5)
Functional Composition
46(2)
Growth of Functions
48(1)
Computations and Explorations
49(2)
Exercises/Projects
51(2)
The Fundamentals
53(46)
Implementing Algorithms in Maple
53(6)
Procedure Execution
54(1)
Local and Global Variables
55(4)
Measuring Time Complexity
59(3)
Number Theory
62(9)
Basic Number Theory
62(1)
Greatest Common Divisors and Least Common Multiples
63(3)
Chinese Remainder Theorem
66(1)
Factoring Integers
67(1)
Primality Testing
68(2)
The Euler φ-Function
70(1)
Applications of Number Theory
71(8)
Hash Functions
71(4)
Linear Congruential Pseudorandom Number Generators
75(2)
Classical Cryptography
77(2)
RSA Cryptography
79(4)
Generating Large Primes
82(1)
Base Expansions
83(2)
Matrices
85(6)
Zero-One Matrices
88(3)
Computations and Explorations
91(4)
Exercises/Projects
95(4)
Mathematical Reasoning
99(18)
Methods of Proof
99(5)
Mathematical Induction
104(4)
Recursive and Iterative Definitions
108(3)
Computations and Explorations
111(4)
Exercises/Projects
115(2)
Counting
117(30)
Relevant Maple Functions
118(2)
More Combinatorial Functions
120(8)
Binomial Coefficients
120(3)
Multinomial Coefficients
123(3)
Stirling Numbers
126(2)
Permutations
128(4)
Partitions of Integers
130(2)
Discrete Probability
132(1)
Permutations
133(3)
Computations and Explorations
136(8)
Exercises/Projects
144(3)
Counting
147(36)
Recurrence Relations
147(3)
Towers of Hanoi Problem
148(2)
Solving Recurrences with Maple
150(14)
Inhomogeneous Recurrence Relations
157(2)
Maple's Recurrence Solver
159(4)
Divide and Conquer Relations
163(1)
Inclusion - Exclusion
164(5)
Generating Functions
169(4)
Computations and Explorations
173(7)
Exercises/Projects
180(3)
Relations
183(34)
An Introduction to Relations in Maple
183(2)
Determining Properties of Relations using Maple
185(2)
n-ary Relations in Maple
187(3)
Representing Relations as Digraphs and Zero-One Matrices
190(5)
Representing Relations Using Directed Graphs
190(2)
Representing Relations Using Zero-One Matrices
192(3)
Computing Closures of Relations
195(4)
Reflexive Closure
195(1)
Symmetric Closure
196(1)
Transitive Closure
196(3)
Equivalence Relations
199(2)
Partial Ordering and Minimal Elements
201(4)
Lattices
205(1)
Covering Relations
206(2)
Hasse Diagrams
208(4)
Computations and Explorations
212(3)
Exercises/Projects
215(2)
Graphs
217(56)
Getting Started with Graphs
217(12)
Simple Graphs
217(2)
Visualizing Graphs in Maple
219(6)
Directed Graphs
225(4)
Simple Computations on Graphs
229(3)
Degrees of Vertices
230(2)
Constructing Special Graphs
232(14)
Bipartite Graphs
237(3)
Subgraphs, Unions and Complements
240(6)
Representing Graphs, and Graph Isomorphism
246(5)
Representing Graphs
246(2)
Graphs Isomorphism
248(3)
Connectivity
251(4)
Euler and Hamilton Paths
255(3)
Euler Circuits
255(3)
Shortest Path Problems
258(3)
Planar Graphs and Graph Coloring
261(2)
Planar Graphs
261(1)
Graph Colorings
261(2)
Flows
263(2)
Computations and Explorations
265(6)
Exercises/Projects
271(2)
Trees
273(50)
Introduction to Trees
273(7)
Rooted Trees
276(4)
Application of Trees
280(8)
Binary Insertion
281(5)
Huffman Coding
286(2)
Tree Traversal
288(8)
Infix, Prefix and Postfix Notation
292(4)
Trees and Sorting
296(4)
Bubble Sort
297(1)
Merge Sort
298(2)
Spanning Trees
300(9)
Backtracking
303(6)
Minimum Spanning Trees
309(5)
Computations and Explorations
314(6)
Additional Exercises
320(3)
Boolean Algebra
323(26)
Boolean Functions
323(7)
A Boolean Evaluator
326(1)
Representing Boolean Functions
327(1)
Verifying Boolean Identities
327(1)
Duality
328(1)
Disjunctive Normal Form
329(1)
Representing Boolean Functions
330(3)
Minimization of Boolean Expressions and Circuits
333(3)
Don't Care Conditions
336(3)
Computations and Explorations
339(6)
Exercises/Projects
345(4)
Modeling Computation
349(38)
Introduction
349(1)
Stacks
350(3)
Finite-State Machines with Output
353(3)
Finite-State Machines with No Output
356(5)
Deterministic Finite-State Machine Simulation
361(2)
Nondeterministic Finite Automata
363(7)
DFA to NFA
370(4)
Converting Regular Expressions to/from Finite Automata
374(4)
Turing Machines
378(6)
Computations and Explorations
384(3)
Exercises/Projects
387(1)
Index