Atjaunināt sīkdatņu piekrišanu

E-grāmata: Extremal Problems for Finite Sets

  • Formāts: 232 pages
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Aug-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470448479
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 66,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 232 pages
  • Sērija : Student Mathematical Library
  • Izdošanas datums: 30-Aug-2018
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470448479
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

One of the great appeals of Extremal Set Theory as a subject is that the statements are easily accessible without a lot of mathematical background, yet the proofs and ideas have applications in a wide range of fields including combinatorics, number theory, and probability theory. Written by two of the leading researchers in the subject, this book is aimed at mathematically mature undergraduates, and highlights the elegance and power of this field of study. The first half of the book provides classic results with some new proofs including a complete proof of the Ahlswede-Khachatrian theorem as well as some recent progress on the Erdos matching conjecture. The second half presents some combinatorial structural results and linear algebra methods including the Deza-Erdos-Frankl theorem, application of Rodl's packing theorem, application of semidefinite programming, and very recent progress (obtained in 2016) on the Erdos-Szemeredi sunflower conjecture and capset problem. The book concludes with a collection of challenging open problems.
Notation vii
Chapter 1 Introduction
1(4)
Chapter 2 Operations on sets and set systems
5(8)
Chapter 3 Theorems on traces
13(6)
Chapter 4 The Erdos-Ko-Rado Theorem via shifting
19(4)
Chapter 5 Katona's circle
23(8)
Chapter 6 The Kruskal-Katona Theorem
31(6)
Chapter 7 Kleitman Theorem for nos pairwise disjoint sets
37(6)
Chapter 8 The Hilton-Milner Theorem
43(4)
Chapter 9 The Erdos matching conjecture
47(6)
Chapter 10 The Ahlswede-Khachatrian Theorem
53(8)
Chapter 11 Pushing-pulling method
61(8)
Chapter 12 Uniform measure versus product measure
69(8)
Chapter 13 Kleitman's correlation inequality
77(6)
Chapter 14 R-Cross union families
83(4)
Chapter 15 Random walk method
87(8)
Chapter 16 L-systems
95(8)
Chapter 17 Exponent of a (10, {0,1,3,6})-system
103(6)
Chapter 18 The Deza-Erdos-Frankl Theorem
109(6)
Chapter 19 Fiiredi's structure theorem
115(6)
Chapter 20 Rodl's packing theorem
121(6)
Chapter 21 Upper bounds using multilinear polynomials
127(10)
Chapter 22 Application to discrete geometry
137(4)
Chapter 23 Upper bounds using inclusion matrices
141(8)
Chapter 24 Some algebraic constructions for L-systems
149(6)
Chapter 25 Oddtown and eventown problems
155(6)
Chapter 26 Tensor product method
161(14)
Chapter 27 The ratio bound
175(6)
Chapter 28 Measures of cross independent sets
181(8)
Chapter 29 Application of semidefinite programming
189(6)
Chapter 30 A cross intersection problem with measures
195(6)
Chapter 31 Capsets and sunflowers
201(10)
Chapter 32 Challenging open problems
211(6)
Bibliography 217(6)
Index 223
Peter Frankl, Renyi Institute, Budapest, Hungary.

Norihide Tokushige, Ryukyu University, Okinawa, Japan.