Atjaunināt sīkdatņu piekrišanu

Fairness in Academic Course Timetabling 2015 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 147 pages, height x width: 235x155 mm, weight: 2584 g, 18 Illustrations, black and white; XIV, 147 p. 18 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Economics and Mathematical Systems 678
  • Izdošanas datums: 27-Jan-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319127985
  • ISBN-13: 9783319127989
  • Mīkstie vāki
  • Cena: 46,91 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 55,19 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 147 pages, height x width: 235x155 mm, weight: 2584 g, 18 Illustrations, black and white; XIV, 147 p. 18 illus., 1 Paperback / softback
  • Sērija : Lecture Notes in Economics and Mathematical Systems 678
  • Izdošanas datums: 27-Jan-2015
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319127985
  • ISBN-13: 9783319127989

This monograph deals with theoretical and practical aspects of creating course timetables at academic institutions. The task is typically to create a timetable that suits the requirements of the stakeholders – students, lecturers, and the administration – as well as possible. The book presents an exposition of the basic combinatorial problems and solution methods for course timetabling and related tasks. It provides a rigorous treatment of fairness issues that arise in the course timetabling context and shows how to deal with the potentially conflicting interests of the stakeholders. The proposed methods are also readily applicable to other classes of scheduling problems such as staff rostering. Finally, it presents a comprehensive case study on the implementation of an automated course timetabling system at the school of engineering of the University of Erlangen-Nuremberg. The case study includes a detailed description of the problem model as well as an evaluation of stakeholder satisfaction.

1 Introduction
1(10)
1.1 Overview
2(3)
1.1.1 The University Course Timetabling Problem
2(1)
1.1.2 Fairness in Academic Course Timetabling
3(1)
1.1.3 Real-World Academic Course Timetabling
4(1)
1.2 Computational Problems
5(1)
1.3 Computational Experiments
6(2)
1.4 Graph-Theoretic Preliminaries
8(3)
2 The University Course Timetabling Problem
11(64)
2.1 Problem Formulation
11(2)
2.2 Related Problems
13(4)
2.2.1 School Timetabling
14(1)
2.2.2 Examination Timetabling
15(1)
2.2.3 Other Related Problems
16(1)
2.3 The Search Space
17(21)
2.3.1 Vertex Coloring and Recoloring
18(10)
2.3.2 Connectedness
28(10)
2.4 Solution Approaches
38(19)
2.4.1 Existing Approaches
39(7)
2.4.2 The Kempe Insertion Heuristic
46(6)
2.4.3 SAT Encoding of the UCTP
52(5)
2.5 Experimental Evaluation of the Kempe Insertion Heuristic
57(18)
2.5.1 Experiment 1: The Impact of Preprocessing
59(1)
2.5.2 Experiment 2: Algorithm Configuration and Evaluation
60(15)
3 Fairness in Academic Course Timetabling
75(32)
3.1 Background
76(8)
3.1.1 Fairness and Resource Allocation
76(5)
3.1.2 The Assignment Problem
81(1)
3.1.3 The CB-CTT Problem
82(2)
3.2 Fair Course Timetabling Problem Formulations
84(2)
3.3 Solving the MMF-CB-CTT Problem by Simulated Annealing
86(3)
3.4 The Generalized Lexicographic Bottleneck Optimization Problem
89(4)
3.4.1 Problem Formulation and Properties
89(2)
3.4.2 Measuring Solution Quality
91(2)
3.5 A Decomposition of the MMF-CB-CTT Problem
93(2)
3.6 Evaluation
95(12)
3.6.1 Fairness of the Known Best Timetables
96(1)
3.6.2 Evaluation of the MAXMINFAIRSA Algorithm
97(6)
3.6.3 The Tradeoff Between Fairness and Efficiency
103(4)
4 Real-World Academic Course Timetabling
107(22)
4.1 Related Work
108(3)
4.1.1 Related Case Studies
109(1)
4.1.2 Available Software
110(1)
4.2 Motivation
111(3)
4.3 The Course Timetabling Process
114(2)
4.4 The TF-CB-CTT Problem
116(3)
4.4.1 Problem Formulation
116(2)
4.4.2 Soft Constraints
118(1)
4.5 Instance Generation
119(4)
4.6 Reception and Feedback
123(6)
4.6.1 Students
124(3)
4.6.2 Lecturers
127(2)
A Appendix
129(6)
A.1 Degeneracy of UCTP Conflict Graphs
129(1)
A.2 A Meta-heuristics Toolbox
129(6)
A.2.1 Local Search
131(1)
A.2.2 Evolutionary Algorithms
132(3)
Bibliography 135(10)
Author's Own Publications 145(2)
Index 147
Moritz Mühlenthaler holds a Bachelor of Science (Honours) in Computer Science from the University of Adelaide and a Diploma in Computer Science from the University of Erlangen-Nürnberg. He was a doctoral student at the Efficient Algorithms and Combinatorial Optimization group at the University of Erlangen-Nürnberg and finished his Doctor of Engineering (Dr.-Ing.) in 2014. His research interests include graph-theoretic concepts in computer science in general, and timetabling and scheduling problems in particular.