Atjaunināt sīkdatņu piekrišanu

False Feedback in Economics: The Case for Replication [Hardback]

  • Hardback
  • Cena: 191,26 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
"This book provides a comprehensive account of the challenges encountered in empirical economics. It explains approaches used implicitly by researchers and shows where they are adequate and where they break down. It investigates why, in the field of economics, we make so little visible progress when compared to fields with a strong practical component like the computer sciences. The author asserts that the main impediment to progress in economics is "false feedback", which is defined as a false result inan empirical study, such as empirical evidence produced by a statistical model that violates some of its assumptions. Because false feedback is hard to recognize, economists have difficulty knowing where they stand in their inquiries and regularly leads them to the wrong conclusions. The book searches for the reasons behind the emergence of such false feedback. It thereby contributes to a wider discussion in the field of metascience about the actual practices of researchers. The book thus offers a case study of metascience for the field of empirical economics. The main strengths of the book are the numerous smaller insights it provides throughout. It delves into deep discussions of various theoretical aspects, which it illustrates by many applied examples and a wide array of references, especially to philosophy. The book clarifies complicated and often abstract subjects, particularly when it comes to controversial topics such as data mining. Readers will gain an understanding of the main challenges present in empirical economic research, as well as, the possible solutions"--

The author asserts that the main impediment to progress in economics is “false feedback”, which is defined as a false result in an empirical study, such as empirical evidence produced by a statistical model that violates some of its assumptions.

This book investigates why economics makes less visible progress over time than scientific fields with a strong practical component, where interactions with physical technologies play a key role. The thesis of the book is that the main impediment to progress in economics is "false feedback", which it defines as the false result of an empirical study, such as empirical evidence produced by a statistical model that violates some of its assumptions. In contrast to scientific fields that work with physical technologies, false feedback is hard to recognize in economics. Economists thus have difficulties knowing where they stand in their inquiries, and false feedback will regularly lead them in the wrong directions.

The book searches for the reasons behind the emergence of false feedback. It thereby contributes to a wider discussion in the field of metascience about the practices of researchers when pursuing their daily business. The book thus offers a case study of metascience for the field of empirical economics.

The main strength of the book are the numerous smaller insights it provides throughout. The book delves into deep discussions of various theoretical issues, which it illustrates by many applied examples and a wide array of references, especially to philosophy of science. The book puts flesh on complicated and often abstract subjects, particularly when it comes to controversial topics such as p-hacking.

The reader gains an understanding of the main challenges present in empirical economic research and also the possible solutions. The main audience of the book are all applied researchers working with data and, in particular, those who have found certain aspects of their research practice problematic.

1. Scientific Progress
2. Trial and Error
3. Conjectures and falsification
4. The garden of forking paths
5. The Duhem-Quine thesis
6. The detection of patterns
7. The illusion of true feedback
8. False feedback bubbles
9. The tree of knowledge
10. The locality of knowledge
11. Machine learning and sample splits
12. Practical experience
13. Robustness checks
14. Replication
Andrin Spescha is a postdoctoral researcher at ETH Zurich, KOF Swiss Economic Institute, Zurich, Switzerland. He received his PhD from ETH Zurich (Dr. sc. ETH) in 2018. Prior to this, he completed a Bachelor of Arts in Political Sciences and Economics and a Master of Arts in Economics at the University of Zurich, Switzerland.