Atjaunināt sīkdatņu piekrišanu

E-grāmata: Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations

  • Formāts: PDF+DRM
  • Izdošanas datums: 31-May-2011
  • Izdevniecība: Medical Information Science Reference
  • Valoda: eng
  • ISBN-13: 9781609605582
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 291,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 31-May-2011
  • Izdevniecība: Medical Information Science Reference
  • Valoda: eng
  • ISBN-13: 9781609605582
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"This book offers a unique perspective on machine learning aspects of microarray gene expression based cancer classification, combining computer science, and biology"--Provided by publisher.

Okun (SMARTTECCO, Malmo, Sweden) offers a reference guide on machine learning aspects of one of the functions of bioinformatics, microarray gene expression-based cancer classification. The author notes that his book is unique in that it covers three topics that are not typically combined: machine learning, bioinformatics, and MATLAB. A sampling of topics includes gene expression data sets, extreme value-based gene selection, evolutionary algorithm for identifying predictive genes, ensembles of classifiers, and ensemble gene selection. The book also could be used as a textbook. Annotation ©2011 Book News, Inc., Portland, OR (booknews.com)
Preface viii
Chapter 1 Biological Background
1(5)
A Little Bit of Biology
1(3)
References
4(1)
Endnotes
5(1)
Chapter 2 Gene Expression Data Sets
6(4)
Biological Data and Their Characteristics
6(3)
References
9(1)
Endnotes
9(1)
Chapter 3 Introduction to Data Classification
10(3)
Problem of Data Classification
10(2)
References
12(1)
Endnotes
12(1)
Chapter 4 Naive Bayes
13(19)
Bayes and Naive Bayes
13(15)
References
28(2)
Endnotes
30(2)
Chapter 5 Nearest Neighbor
32(21)
Nearest Neighbor Classification
32(16)
References
48(3)
Endnotes
51(2)
Chapter 6 Classification Tree
53(15)
Tree-Like Classifier
53(13)
References
66(1)
Endnotes
67(1)
Chapter 7 Support Vector Machines
68(49)
Support Vector Machines
68(44)
References
112(2)
Endnotes
114(3)
Chapter 8 Introduction to Feature and Gene Selection
117(6)
Problem of Feature Selection
117(4)
References
121(1)
Endnotes
121(2)
Chapter 9 Feature Selection Based on Elements of Game Theory
123(18)
Feature Selection Based on the Shapley Value
123(16)
References
139(1)
Endnote
139(2)
Chapter 10 Kernel-Based Feature Selection with the Hilbert-Schmidt Independence Criterion
141(18)
Kernel Methods and Feature Selection
141(14)
References
155(2)
Endnotes
157(2)
Chapter 11 Extreme Value Distribution Based Gene Selection
159(18)
Blend of Elements of Extreme Value Theory and Logistic Regression
159(15)
References
174(1)
Endnotes
175(2)
Chapter 12 Evolutionary Algorithm for Identifying Predictive Genes
177(26)
Evolutionary Search for Optimal or Near-Optimal Set of Genes
177(22)
References
199(2)
Endnotes
201(2)
Chapter 13 Redundancy-Based Feature Selection
203(20)
Redundancy of Features
203(17)
References
220(2)
Endnotes
222(1)
Chapter 14 Unsupervised Feature Selection
223(13)
Unsupervised Feature Filtering
223(11)
References
234(2)
Chapter 15 Differential Evolution for Finding Predictive Gene Subsets
236(16)
Differential Evolution: Global, Evolution Strategy Based Optimization Method
236(13)
References
249(2)
Endnotes
251(1)
Chapter 16 Ensembles of Classifiers
252(8)
Ensemble Learning
252(5)
References
257(1)
Endnotes
258(2)
Chapter 17 Classifier Ensembles Built on Subsets of Features
260(36)
Shaking Stable Classifiers
260(31)
References
291(3)
Endnotes
294(2)
Chapter 18 Bagging and Random Forests
296(18)
Bootstrap and its Use in Classifier Ensembles
296(15)
References
311(2)
Endnotes
313(1)
Chapter 19 Boosting and AdaBoost
314(15)
Weighted Learning, Boosting and AdaBoost
314(12)
References
326(2)
Endnotes
328(1)
Chapter 20 Ensemble Gene Selection
329(5)
Getting Important Genes out of a Pool
329(4)
References
333(1)
Endnotes
333(1)
Chapter 21 Introduction to Classification Error Estimation
334(7)
Problem of Classification Error Estimation
334(4)
References
338(2)
Endnotes
340(1)
Chapter 22 ROC Curve, Area under it, Other Classification Performance Characteristics and Statistical Tests
341(42)
Classification Performance Evaluation
341(38)
References
379(2)
Endnotes
381(2)
Chapter 23 Bolstered Resubstitution Error
383(23)
Alternative to Traditional Error Estimators
383(21)
References
404(1)
Endnotes
405(1)
Chapter 24 Performance Evaluation: Final Check
406(8)
Bayesian Confidence (Credible) Interval
406(6)
References
412(1)
Endnotes
413(1)
Chapter 25 Application Examples
414(22)
Joining All Pieces Together
414(20)
References
434(1)
Endnote
435(1)
Chapter 26 End Remarks
436(3)
A Few Words in the End
436(1)
References
437(2)
About the Author 439(1)
Index 440