|
1 Introduction to High-Dimensionality |
|
|
1 | (12) |
|
1.1 The Need for Feature Selection |
|
|
2 | (1) |
|
1.2 When Features Are Born |
|
|
3 | (1) |
|
1.3 Intrinsic Characteristics of Data |
|
|
4 | (5) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.4 A Guide for the Reader |
|
|
9 | (4) |
|
|
10 | (3) |
|
2 Foundations of Feature Selection |
|
|
13 | (16) |
|
|
14 | (1) |
|
|
14 | (1) |
|
|
15 | (1) |
|
2.2 Feature Selection Methods |
|
|
15 | (11) |
|
|
17 | (7) |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (3) |
|
|
26 | (3) |
|
3 A Critical Review of Feature Selection Methods |
|
|
29 | (32) |
|
3.1 Existing Reviews of Feature Selection Methods |
|
|
30 | (1) |
|
3.2 Experimental Settings |
|
|
31 | (2) |
|
|
33 | (11) |
|
3.3.1 Dealing with Correlation and Redundancy: CorrAL |
|
|
34 | (1) |
|
3.3.2 Dealing with Nonlinearity: XOR and Parity |
|
|
35 | (1) |
|
3.3.3 Dealing with Noise in the Inputs: Led |
|
|
35 | (5) |
|
3.3.4 Dealing with Noise in the Target: Monk3 |
|
|
40 | (3) |
|
3.3.5 Dealing with a Complex Dataset: Madelon |
|
|
43 | (1) |
|
|
44 | (6) |
|
3.4.1 Case Study I: Different Kernels for SVM-RFE |
|
|
44 | (2) |
|
3.4.2 Case Study II: mRMR vs Md |
|
|
46 | (1) |
|
3.4.3 Case Study III: Subset Filters |
|
|
47 | (1) |
|
3.4.4 Case Study IV: Different Levels of Noise in the Input |
|
|
48 | (2) |
|
3.5 Analysis and Discussion |
|
|
50 | (6) |
|
3.5.1 Analysis of Success Index |
|
|
50 | (2) |
|
3.5.2 Analysis of Classification Accuracy |
|
|
52 | (4) |
|
|
56 | (5) |
|
|
57 | (4) |
|
4 Feature Selection in DNA Microarray Classification |
|
|
61 | (34) |
|
4.1 Background: The Problem and First Attempts |
|
|
63 | (1) |
|
4.2 Intrinsic Characteristics of Microarray Data |
|
|
64 | (3) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (2) |
|
|
67 | (1) |
|
4.3 Algorithms for Feature Selection on Microarray Data: A Review |
|
|
67 | (9) |
|
|
68 | (2) |
|
|
70 | (2) |
|
|
72 | (1) |
|
|
73 | (3) |
|
4.4 A Framework for Feature Selection Evaluation in Microarray Datasets |
|
|
76 | (3) |
|
4.4.1 Validation Techniques |
|
|
77 | (1) |
|
4.4.2 On the Datasets Characteristics |
|
|
78 | (1) |
|
4.4.3 Feature Selection Methods |
|
|
79 | (1) |
|
4.4.4 Evaluation Measures |
|
|
79 | (1) |
|
4.5 A Practical Evaluation: Analysis of Results |
|
|
79 | (9) |
|
4.5.1 Holdout Validation Study |
|
|
80 | (3) |
|
4.5.2 Cross-validation Study |
|
|
83 | (5) |
|
|
88 | (7) |
|
|
91 | (4) |
|
5 Application of Feature Selection to Real Problems |
|
|
95 | (30) |
|
5.1 Classification in Intrusion Detection Systems |
|
|
96 | (9) |
|
5.1.1 Results on the Binary Case |
|
|
98 | (3) |
|
5.1.2 Results on the Multiple Class Case |
|
|
101 | (4) |
|
5.2 Tear Film Lipid Layer Classification |
|
|
105 | (12) |
|
5.2.1 Classification Accuracy |
|
|
110 | (1) |
|
5.2.2 Robustness to Noise |
|
|
110 | (1) |
|
5.2.3 Feature Extraction Time |
|
|
111 | (1) |
|
|
112 | (2) |
|
5.2.5 The Concatenation of All Methods with CFS: A Case Study |
|
|
114 | (3) |
|
5.3 Cost-Based Feature Selection |
|
|
117 | (5) |
|
5.3.1 Description of the Method |
|
|
117 | (2) |
|
5.3.2 Experimental Results |
|
|
119 | (3) |
|
|
122 | (3) |
|
|
123 | (2) |
|
|
125 | (8) |
|
6.1 Millions of Dimensions |
|
|
125 | (1) |
|
|
126 | (1) |
|
6.3 Distributed Feature Selection |
|
|
127 | (2) |
|
|
129 | (1) |
|
|
130 | (3) |
|
|
130 | (3) |
|
A Experimental Framework Used in This Book |
|
|
133 | |
|
|
133 | (1) |
|
|
133 | (7) |
|
|
134 | (1) |
|
|
135 | (4) |
|
A.2.3 DNA Microarray Datasets |
|
|
139 | (1) |
|
A.3 Validation Techniques |
|
|
140 | (1) |
|
A.3.1 k-Fold Cross-validation |
|
|
140 | (1) |
|
A.3.2 Leave-One-Out Cross-validation |
|
|
140 | (1) |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
141 | (1) |
|
A.5 Discretization Algorithms |
|
|
142 | (1) |
|
A.6 Classification Algorithms |
|
|
143 | (2) |
|
A.6.1 Support Vector Machine, SVM |
|
|
143 | (1) |
|
A.6.2 Proximal Support Vector Machine, PSVM |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
A.6.5 k-Nearest Neighbors, k-NN |
|
|
144 | (1) |
|
A.6.6 One-Layer Feedfoward Neural Network, One-Layer NN |
|
|
145 | (1) |
|
|
145 | |
|
A.7.1 Multiple-Criteria Decision-Making |
|
|
145 | (1) |
|
|
146 | |